DOI QR코드

DOI QR Code

Effect of SiC and WC additon on Oxidation Behavior of Spark-Plasma-Sintered ZrB2

  • Kim, Chang-Yeoul (Nano- Material and Process Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Choi, Jae-Seok (Dept. of Material Sci. & Eng. Hanyang University) ;
  • Choi, Sung-Churl (Dept. of Material Sci. & Eng. Hanyang University)
  • Received : 2019.11.06
  • Accepted : 2019.12.23
  • Published : 2019.12.28

Abstract

ZrB2 ceramic and ZrB2 ceramic composites with the addition of SiC, WC, and SiC/WC are successfully synthesized by a spark plasma sintering method. During high-temperature oxidation, SiC additive form a SiO2 amorphous outer scale layer and SiC-deplete ZrO2 scale layer, which decrease the oxidation rate. WC addition forms WO3 during the oxidation process to result in a ZrO2/WO3 liquid sintering layer, which is known to improve the anti-oxidation effect. The addition of SiC and WC to ZrB2 reduces the oxygen effective diffusivity by one-fifth of that of ZrB2. The addition of both SiC and WC shows the formation of a SiO2 outer dense glass layer and ZrO2/WO3 layer so that the anti-oxidation effect is improved three times as much as that of ZrB2. Therefore, SiC- and WC-added ZrB2 has a lower two-order oxygen effective diffusivity than ZrB2; it improves the anti-oxidation performance 3 times as much as that of ZrB2.

Keywords

References

  1. F. Monteverde and A. Bellosi: J. Electrochem. Soc., 150 (2003) B552. https://doi.org/10.1149/1.1618226
  2. W. C. Tripp and H. C. Graham: J. Electrochem. Soc., 118 (1971) 1195. https://doi.org/10.1149/1.2408279
  3. A. Rezaie, W. G. Fahrenholtz and G. E. Hilmas: J. Eur. Ceram. Soc., 27 (2007) 2495. https://doi.org/10.1016/j.jeurceramsoc.2006.10.012
  4. G.-J. Zhang, Z.-Y. Deng, N. Kondo, J.-F. Yang and T. Ohji: J. Am. Ceram. Soc., 83 (2000) 2330. https://doi.org/10.1111/j.1151-2916.2000.tb01558.x
  5. S. S. Hwang, A. L. Vasiliev and N. P. Padture: Mater. Sci. Eng. A, 464 (2007) 216. https://doi.org/10.1016/j.msea.2007.03.002
  6. J. Han, P. Hu, X. Zhang and S. Meng: Scr. Mater., 57 (2007) 825. https://doi.org/10.1016/j.scriptamat.2007.07.009
  7. S. N. Karlsdottir and J. W. Halloran: J. Am. Ceram. Soc., 92 (2009) 481. https://doi.org/10.1111/j.1551-2916.2008.02874.x
  8. W.-M. Guo and G.-J. Zhang: J. Eur. Ceram. Soc., 30 (2010) 2387. https://doi.org/10.1016/j.jeurceramsoc.2010.01.028
  9. W. G. Fahrenholtz: J. Am. Ceram. Soc., 90 (2007) 143. https://doi.org/10.1111/j.1551-2916.2006.01329.x
  10. M. Mallik, K. K. Ray and R. Mitra: J. Eur. Ceram. Soc., 31 (2011) 199. https://doi.org/10.1016/j.jeurceramsoc.2010.08.018
  11. S. C. Zhang, G. E. Hilmas and W. G. Fahrenholtz: J. Am. Ceram. Soc., 91 (2008) 3530. https://doi.org/10.1111/j.1551-2916.2008.02713.x
  12. S. C. Zhang, G. E. Hilmas and W. G. Fahrenholtz: J. Am. Ceram. Soc., 94 (2011) 1198. https://doi.org/10.1111/j.1551-2916.2010.04216.x
  13. J. Zou, S.-K. Sun, G.-J. Zhang, Y.-M. Kan, P.-L. Wang and T. Ohji: J. Am. Ceram. Soc., 94 (2011) 1575. https://doi.org/10.1111/j.1551-2916.2010.04278.x
  14. J. Zou, G.-J. Zhang, C.-F. Hu, T. Nishimura, Y. Sakka, J. Vleugels and O. Van der Biest: J. Am. Ceram. Soc., 95 (2012) 874. https://doi.org/10.1111/j.1551-2916.2011.05062.x
  15. T. A. Parthasarathy, R. A. Rapp, M. Opeka and R. J. Kerans: J. Am. Ceram. Soc., 92 (2009) 1079. https://doi.org/10.1111/j.1551-2916.2009.03031.x
  16. T. A. Parthasarathy, R. A. Rapp, M. Opeka and R. J. Kerans: Acta Mater., 55 (2007) 5999. https://doi.org/10.1016/j.actamat.2007.07.027