• Title/Summary/Keyword: Nano Scale

Search Result 1,063, Processing Time 0.03 seconds

Synthesis of Crystalline film from ${CH_4}-{H_2}-{N_2}$ gases with MW-PACVD (${CH_4}-{H_2}-{N_2}$ 기체계에서 MW-PACVD를 이용한 결정상 합성)

  • Kim, Do-Geun;Baek, Young-Joon;Seong, Tae-Yeon
    • Korean Journal of Materials Research
    • /
    • v.10 no.9
    • /
    • pp.648-655
    • /
    • 2000
  • Synthesis of the crystalline film was investigated under the diamond growth condition with altering the addition of the nitrogen from 0% to 95%. With increasing the nitrogen concentration, surface morphology of the film was changed from the diamond film with {100} growth plane to the non-faceted diamond film with nano-scale grains. It also showed that the deposition of the diamond film could be synthesized using only methane and nitrogen gases without hydrogen gas. Separated particles with diamond structure showed an octahedral shaped I the nitrogen ranges between 30% and 80%, and newly formed hexagonal crystals are observed when substrate temperature with diamond structure, however, also identify that the hexagonal crystal was SiCN composite composed of Si, C and N atoms.

  • PDF

In-Situ Electrical Resistance and Microstructure for Ultra-Thin Metal Film Coated by Magnetron Sputtering (마그네트론 스파터시 금속 극박막의 실시간 전기저항과 미세구조 변화)

  • Kwon, Na-Hyun;Kim, Hoi-Bong;Hwang, Bin;Bae, Dong-Su;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.21 no.3
    • /
    • pp.174-179
    • /
    • 2011
  • Ultra-thin aluminum (Al) and tin (Sn) films were grown by dc magnetron sputtering on a glass substrate. The electrical resistance R of films was measured in-situ method during the film growth. Also transmission electron microscopy (TEM) study was carried out to observe the microstructure of the films. In the ultra-thin film study, an exact determination of a coalescence thickness and a continuous film thickness is very important. Therefore, we tried to measure the minimum thickness for continuous film (dmin) by means of a graphical method using a number of different y-values as a function of film thickness. The raw date obtained in this study provides a graph of in-situ resistance of metal film as a function of film thickness. For the Al film, there occurs a maximum value in a graph of in-situ electrical resistance versus film thickness. Using the results in this study, we could define clearly the minimum thickness for continuous film where the position of minimum values in the graph when we put the value of Rd3 to y-axis and the film thickness to x-axis. The measured values for the minimum thickness for continuous film are 21 nm and 16 nm for sputtered Al and Sn films, respectively. The new method for defining the minimum thickness for continuous film in this study can be utilized in a basic data when we design an ultra-thin film for the metallization application in nano-scale devices.

Improvement of Repeatability during Dielectric Etching by Controlling Upper Electrode Temperature (Capacitively Coupled Plasma Source를 이용한 Etcher의 상부 전극 온도 변화에 따른 Etch 특성 변화 개선)

  • Shin, Han-Soo;Roh, Yong-Han;Lee, Nae-Eung
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.5
    • /
    • pp.322-326
    • /
    • 2011
  • Etch process of silicon dioxide layer by using capacitively coupled plasma (CCP) is currently being used to manufacture semiconductor devices with nano-scale feature size below 50 nm. In typical CCP plasma etcher system, plasmas are generated by applying the RF power on upper electrode and ion bombardment energy is controlled by applying RF power to the bottom electrode with the Si wafer. In this case, however, etch results often drift due to heating of the electrode during etching process. Therefore, controlling the temperature of the upper electrode is required to obtain improvement of etch repeatability. In this work, we report repeatability improvement during the silicon dioxide etching under extreme process conditions with very high RF power and close gap between upper and bottom electrodes. Under this severe etch condition, it is difficult to obtain reproducible oxide etch results due to drifts in etch rate, critical dimension, profile, and selectivity caused by unexpected problems in the upper electrode. It was found that reproducible etch results of silicon dioxide layer could be obtained by controlling temperature of the upper electrode. Methods of controlling the upper electrode and the correlation with etch repeatability will be discussed in detail.

Application of Graphene Platelets on Electronic Controlled Thermostat of TGDI Engine for Improving Thermal Sensitivity (TGDI엔진용 전자식 수온조절기의 감온성능 향상을 위한 그래핀 소재의 적용)

  • Kim, SeoKyu;Kim, YongJeong;Joung, Heehwa;Jeon, Wonil;Jeong, Jinwoo;Jeong, SooJin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.66-73
    • /
    • 2017
  • In this work, graphene platelets were introduced into wax in an automotive electronic controlled thermostat for the purpose of enhancing its thermal-conductive property and improving response performance. Graphene content ranging from 10 % to 20% was added into and mixed with the wax to investigate the effect of graphene amounts on the performance of an automotive electronic controlled thermostat in terms of response time, hysteresis and melting temperature. The experimental results revealed that graphene in wax contributed to a reduction in the response time and hysteresis of an automotive electronic controlled thermostat. As a consequence, important improvement in thermal sensitivity, full lift, melting temperature and hysteresis were obtained. The thermal response of wax with graphene content of 20 % was improved by 25 %, as compared to that of wax with Cu content of 20 %. Hysteresis of wax with graphene was reduced by $0.6^{\circ}C$ as compared to that of wax with Cu content. The melting temperature of wax is lowered and hysteresis is also improved with increased graphene content of wax in an electronic controlled thermostat. We hope that this study can help further the transition of nano-fluid technology from small-scale research laboratories to industrial application in the automotive sector.

The Effects of CF4 Partial Pressure on the Hydrophobic Thin Film Formation on Carbon Steel by Surface Treatment and Coating Method with Linear Microwave Ar/CH4/CF4 Plasma

  • Han, Moon-Ki;Cha, Ju-Hong;Lee, Ho-Jun;Chang, Cheol Jong;Jeon, Chang Yeop
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.2007-2013
    • /
    • 2017
  • In order to give hydrophobic surface properties on carbon steel, the fluorinated amorphous carbon films were prepared by using linear 2.45GHz microwave PECVD device. Two different process approaches have been tested. One is direct deposition of a-C:H:F films using admixture of $Ar/CH_4/CF_4$ working gases and the other is surface treatment using $CF_4$ plasma after deposition of a-C:H film with $Ar/CH_4$ binary gas system. $Ar/CF_4$ plasma treated surface with high $CF_4$ gas ratio shows best hydrophobicity and durability of hydrophobicity. Nanometer scale surface roughness seems one of the most important factors for hydrophobicity within our experimental conditions. The properties of a-C:H:F films and $CF_4$ plasma treated a-C:H films were investigated in terms of surface roughness, hardness, microstructure, chemical bonding, atomic bonding structure between carbon and fluorine, adhesion and water contact angle by using atomic force microscopy (AFM), nano-indentation, Raman analysis and X-ray photoelectron spectroscopy (XPS).

Construction of Nano-meter Scale Linear Translation System (직선 이동용 나노 미세 이동장치의 제작)

  • Jung, Goo-Eun;Kahng, Se-Jong
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.5
    • /
    • pp.512-517
    • /
    • 2006
  • A reliable linear translation system was constructed. The system has six piezo legs, attached to a main body, holding a hexagonal sapphire rod. The sapphire rod moves either forward or backward with the sequential motion of the piezo legs, driven by characteristic electric voltage waves. The translational system was tested in vertical direction. The speed of the sapphire rod was turned out to be constant during several mm travel. The slowest upward speed was measured to be ${\sim}1.7{\times}10^{-6}m/s$, yielding ${\sim}28.3nm/step$, while the slowest upward speed was ${\sim}3.7{\times}10^{-6}m/s$, with ${\sim}61.7nm/step$, due to gravitational force. The velocity increases linearly, as the amplitude of the voltage waves increases. The linear translation system will be used as a coarse approach part for a scanning tunneling microscope.

Detection of Resonance Frequency of Micro Mechanical Devices Using Optical Method and Their Application for Mass Detection (광학적 방법을 통한 마이크로 역학 소자의 공진주파수 측정법과 이를 이용한 마이크로 캔티레버 공진기의 질량 변화 연구)

  • Kim, Hak-Seong;Lee, Sang-Wook
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.36-40
    • /
    • 2012
  • We have developed the detection method of the resonance frequency of micro/nano mechanical resonator using optical method. The optical interferometery method enabled us to detect the displacement change of resonators within several nm scale. The micro mechanical resonator was produced by attaching a micro mechanical cantilever to a piezo ceramic. The mass of cantilever was increased by evaporating Au using electron beam evaporator and the mass variation was estimated by detecting the resonance frequency changes.

Hysteresis Compensating of PZT Actuator in Micro Tensile Tester Using Inverse Compensation Method

  • Lee, Hye-Jin;Kim, Seung-Soo;Lee, Nak-Kyu;Lee, Hyoung-Wook;Hwang, Jai-Hyuk;Han, Chang-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.502-505
    • /
    • 2005
  • Researches about micro technology travel lively in these days. Such many researches are concentrated in the field of materials and a process field. But properties of micro materials should be known to give results of research developed into still more. In these various material properties, mechanical property such as tensile strength, elastic modulus, etc is the basic property. To measure mechanical properties in micro or nano scale, actuating must be very precise. PZT is a famous actuator which becomes a lot of use to measure very precise mechanical properties in micro research field. But PZT has a nonlinearity which is called as hysteresis. Not precision result is caused because of this hysteresis property in PZT actuator. Therefore feedback control method is used in many researches to prevent this hysteresis of PZT actuator. Feedback control method produce a good result in processing view, but cause a loss in a resolution view. In this paper, hysteresis is compensated by open loop control method. Hysteresis property is modeled in Mathematical function and compensated control input is constructed using inverse function of original data. Reliability of this control method can be confirmed by testing nickel thin film that is used in MEMS material broadly.

  • PDF

Quantum-Mechanical Modeling and Simulation of Center-Channel Double-Gate MOSFET (중앙-채널 이중게이트 MOSFET의 양자역학적 모델링 및 시뮬레이션 연구)

  • Kim, Ki-Dong;Won, Tae-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.7 s.337
    • /
    • pp.5-12
    • /
    • 2005
  • The device performance of nano-scale center-channel (CC) double-gate (DG) MOSFET structure was investigated by numerically solving coupled Schr$\"{o}$dinger-Poisson and current continuity equations in a self-consistent manner. The CC operation and corresponding enhancement of current drive and transconductance of CC-NMOS are confirmed by comparing with the results of DG-NMOS which are performed under the condition of 10-80 nm gate length. Device optimization was theoretically performed in order to minimize the short-channel effects in terms of subthreshold swing, threshold voltage roll-off, and drain-induced barrier lowering. The simulation results indicate that DG-MOSFET structure including CC-NMOS is a promising candidates and quantum-mechanical modeling and simulation calculating the coupled Schr$\"{o}$dinger-Poisson and current continuity equations self-consistently are necessary for the application to sub-40 nm MOSFET technology.

Fabrication of Thin Solid Oxide Film Fuel Cells

  • Jee, Young-Seok;Chang, Ik-Whang;Son, Ji-Won;Lee, Jong-Ho;Kang, Sang-Kyun;Cha, Suk-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.82-85
    • /
    • 2010
  • Recently, thin film processes for oxides and metal deposition, such as physical vapor deposition (PVD) and chemical vapor deposition (CVD), have been widely adapted to fabricate solid oxide fuel cells (SOFCs). In this paper, we presented two research area of the use of such techniques. Gadolinium doped ceria (GDC) showed high ionic conductivity and could guarantee operation at low temperature. But the electron conductivity at low oxygen partial pressure and the weak mechanical property have been significant problems. To solve these issues, we coated GDC electrolyte with a nano scale yittria-doped stabilized zirconium (YSZ) layer via atomic layer deposition (ALD). We expected that the thin YSZ layer could have functions of electron blocking and preventing ceria from the reduction atmosphere. Yittria-doped barium zirconium (BYZ) has several orders higher proton conductivity than oxide ion conductor as YSZ and also has relatively high chemical stability. The fabrication processes of BYZ is very sophisticated, especially the synthesis of thin-film BYZ. We discussed the detailed fabrication processes of BYZ as well as the deposition of electrode. This paper discusses possible cell structure and process flow to accommodate such films.