• Title/Summary/Keyword: Nano Powders

Search Result 599, Processing Time 0.038 seconds

Thermoelectric Properties of Nano Structured $CoSb_3$ Synthesized by Mechanical Alloying

  • Ur, Soon-Chul;Kwon, Joon-Chul;Choi, Moon-Kwan;Kweon, Soon-Yong;Hong, Tae-Whan;Kim, Il-Ho;Lee, Young-Geun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.665-666
    • /
    • 2006
  • Undoped $CoSb_3$ powders were synthesized by mechanical alloying (MA) of elemental powders using a nominal stoichiometric composition. Nano-structured, single-phase skutterudite $CoSb_3$ was successfully produced by vacuum hot pressing (VHP) using MA powders without subsequent annealing. Phase transformations during synthesis were investigated using XRD, and microstructure was observed using SEM and TEM. Thermoelectric properties in terms of Seebeck coefficient, electrical conductivity, thermal conductivity and figure of merit(ZT) were systematically measured and compared with the results of analogous studies. Lattice thermal conductivity was reduced owing to increasing phone scattering in nano-structured MA $CoSb_3$, leading to enhancement in the thermoelectric figure of merit. MA associated with VHP technique offers an alternative potential processing route for the process of skutterudite.

  • PDF

Fabrication and Characterization of Nano-sized Fe-50 wt% Co Powder from Fe- and Co-nitrate (Fe- 및 Co-질산염을 이용한 Fe-50 wt% Co 나노분말의 합성 및 특성 평가)

  • Riu, Doh-Hyung;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.20 no.10
    • /
    • pp.508-512
    • /
    • 2010
  • The optimum route to fabricate nano-sized Fe-50 wt% Co and hydrogen-reduction behavior of calcined Fe-/Conitrate was investigated. The powder mixture of metal oxides was prepared by solution mixing and calcination of Fe-/Co-nitrate. A DTA-TG and microstructural analysis revealed that the nitrates mixture by the calcination at $300^{\circ}C$ for 2 h was changed to Fe-oxide/$Co_3O_4$ composite powders with an average particle size of 100 nm. The reduction behavior of the calcined powders was analyzed by DTA-TG in a hydrogen atmosphere. The composite powders of Fe-oxide and Co3O4 changed to a Fe-Co phase with an average particle size of 40 nm in the temperature range of $260-420^{\circ}C$. In the TG analysis, a two-step reduction process relating to the presence of Fe3O4 and a CoO phase as the intermediate phase was observed. The hydrogen-reduction kinetics of the Fe-oxide/Co3O4 composite powders was evaluated by the amount of peak shift with heating rates in TG. The activation energies for the reduction, estimated by the slope of the Kissinger plot, were 96 kJ/mol in the peak temperature range of $231-297^{\circ}C$ and 83 kJ/mol of $290-390^{\circ}C$, respectively. The reported activation energy of 70.4-94.4 kJ/mol for the reduction of Fe- and Co-oxides is in reasonable agreement with the measured value in this study.

Effects of Nano FexC Addition on Superconducting Properties of MgB2 (MgB2 초전도 특성에 대한 나노 FexC 첨가 효과)

  • Lee, Dong-Gun;Lee, Ji-Hyun;Jun, Byung-Hyuk;Park, Soon-Dong;Uhm, Young-Rang;Park, Hai-Woong;Kim, Chan-Joong
    • Journal of Powder Materials
    • /
    • v.19 no.2
    • /
    • pp.146-150
    • /
    • 2012
  • The effects of nano $Fe_xC$ addition to superconducting properties of $in$ $situ$ processed $MgB_2$ superconductors was examined. 0.1 wt.% and 1 wt.% nano $Fe_xC$ powders were mixed with boron and magnesium powders by ball milling. The powder mixtures were made into pellets by uniaxial pressing. The pellets were heat-treated at $700^{\circ}C-900^{\circ}C$ in argon atmosphere for $MgB_2$ formation. It was found by powder X-ray diffraction that the raw powders were completely converted into $MgB_2$ after the heat treatment. The superconducting transition temperature ($T_c$) and critical current density ($J_c$), estimated from susceptibility-temperature and $M-H$ curves, were decreased by nano $Fe_xC$ addition. The $T_c$ and $J_c$ decrease by nano $Fe_xC$ addition are attributed to the incorporation of iron and carbon with $MgB_2$ lattices (Fe substitution for Mg and C substitution for B) due to the high reactivity of the nano $Fe_xC$ powder.

Estimation of Phase Ratio for TiO2 Powders by XRD and XAS (XRD와 XAS에 의한 TiO2 분말의 상분율 결정)

  • Rha, Sa-Kyun;Lee, Youn Seoung
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.469-474
    • /
    • 2012
  • The crystallinity and phase ratio of anatase to rutile in $TiO_2$ were estimated by x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS). Traditionally, the structural characterization of $TiO_2$ powders has been carried out by XRD techniques, which are comparatively easy in use and analysis. However, materials with amorphous phase, nano-sized or nano-structured crystallinities cannot be fully characterized by XRD because XRD analysis has a limit for abnormal contributions of the nano-crystal such as the surface contribution. From the comparison with the experimental and calculated Ti K-edge XAS spectra, we found the possibility of efficient estimation in the crystalinites and the phase ratio of anatase to rutile for nano-sized $TiO_2$ mixture.

Fabrication of Titanium Composites Containing nano-sized TiNx (Nano TiNx를 함유한 Ti복합체의 제조)

  • Kim Mun-Hyup;Kim Dong-Sik;Oh Young-Hwan;Park Sung-Bum;Park Seung-Sik;Lee Jee-Hye;Park No-Jin;Kim Sung-Jin;Jung Chan-Hoi;Lee Jun-Hee
    • Journal of Powder Materials
    • /
    • v.13 no.2 s.55
    • /
    • pp.144-149
    • /
    • 2006
  • In this research we tried to make nano-sized TiNx by using planetary milling, and we made the composites double layered of titanium and nano-sized TiNx by using spark plasma sintering apparatus after mixing with the different ratio of pure titanium powder, and they were heat treated at $850^{\circ}C$ for 30 minutes. The crystal structures of nano-sized TiNx powders and the composites were analyzed by X-ray diffraction (XRD). The microstructures of the powders were analyzed by using scanning electron microscopy (FESEM) and the 40-50 nm size of nano-sized TiNx particle on the surface of agglomerated particles was investigated. With increasing the ratio of nano-sized TiNx of the composites, the microvickers hardness of the composites was increased.

Gas Sensing Characteristics and Preparation of SnO2 Nano Powders (SnO2 나노 분말의 합성 및 가스 감응 특성)

  • Lee, Ji-Young;Yu, Yoon-Sic;Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.589-593
    • /
    • 2011
  • [ $SnO_2$ ]nano powders were prepared by solution reduction method using tin chloride($SnCl_2{\cdot}2H_2O$), hydrazine($N_2H_4$) and NaOH. The $SnO_2$ thick films for gas sensors were fabricated by screen printing method on alumina substrates and annealed at $300^{\circ}C$ in air, respectively. XRD patterns of the $SnO_2$ nano powders showed the tetragonal structure with (110) dominant orientation. The particle size of $SnO_2$ nano powders at the ratio of $SnCl_2:N_2H_4$+NaOH= 1:6 was about 60 nm. The sensing characteristics were investigated by measuring the electrical resistance of each sensor in a test box. Sensitivity of $SnO_2$ gas sensor to 5 ppm $CH_4$gas and 5 ppm $CH_3CH_2CH_3$ gas was investigated for various $SnCl_2:N_2H_4$+NaOH proportion. The highest sensitivity to $CH_4$ gas and $CH_3CH_2CH_3$ gas of $SnO_2$ sensors was observed at the $SnCl_2:N_2H_4$+NaOH= 1:8 and $SnCl_2:N_2H_4$+NaOH= 1:6, respectively. Response and recovery times of $SnO_2$ gas sensors prepared by $SnCl_2:N_2H_4$+NaOH= 1:6 was about 40 s and 30 s, respectively.

Effect of Powder Mixing Process on the Characteristics of Hybrid Structure Tungsten Powders with Nano-Micro Size (나노-마이크로 크기 하이브리드 구조 텅스텐 분말특성에 미치는 분말혼합 공정의 영향)

  • Kwon, Na-Yeon;Jeong, Young-Keun;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.384-388
    • /
    • 2017
  • The effect of the mixing method on the characteristics of hybrid-structure W powder with nano and micro sizes is investigated. Fine $WO_3$ powders with sizes of ${\sim}0.6{\mu}m$, prepared by ball milling for 10 h, are mixed with pure W powder with sizes of $12{\mu}m$ by various mixing process. In the case of simple mixing with ball-milled $WO_3$ and micro sized W powders, $WO_3$ particles are locally present in the form of agglomerates in the surface of large W powders, but in the case of ball milling, a relatively uniform distribution of $WO_3$ particles is exhibited. The microstructural observation reveals that the ball milled $WO_3$ powder, heat-treated at $750^{\circ}C$ for 1 h in a hydrogen atmosphere, is fine W particles of ~200 nm or less. The powder mixture prepared by simple mixing and hydrogen reduction exhibits the formation of coarse W particles with agglomeration of the micro sized W powder on the surface. Conversely, in the powder mixture fabricated by ball milling and hydrogen reduction, a uniform distribution of fine W particles forming nano-micro sized hybrid structure is observed.