DOI QR코드

DOI QR Code

Effect of Powder Mixing Process on the Characteristics of Hybrid Structure Tungsten Powders with Nano-Micro Size

나노-마이크로 크기 하이브리드 구조 텅스텐 분말특성에 미치는 분말혼합 공정의 영향

  • Kwon, Na-Yeon (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Jeong, Young-Keun (Graduate School of Convergence Science, Pusan National University) ;
  • Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 권나연 (서울과학기술대학교 신소재공학과) ;
  • 정영근 (부산대학교 융합학부) ;
  • 오승탁 (서울과학기술대학교 신소재공학과)
  • Received : 2017.08.22
  • Accepted : 2017.10.13
  • Published : 2017.10.28

Abstract

The effect of the mixing method on the characteristics of hybrid-structure W powder with nano and micro sizes is investigated. Fine $WO_3$ powders with sizes of ${\sim}0.6{\mu}m$, prepared by ball milling for 10 h, are mixed with pure W powder with sizes of $12{\mu}m$ by various mixing process. In the case of simple mixing with ball-milled $WO_3$ and micro sized W powders, $WO_3$ particles are locally present in the form of agglomerates in the surface of large W powders, but in the case of ball milling, a relatively uniform distribution of $WO_3$ particles is exhibited. The microstructural observation reveals that the ball milled $WO_3$ powder, heat-treated at $750^{\circ}C$ for 1 h in a hydrogen atmosphere, is fine W particles of ~200 nm or less. The powder mixture prepared by simple mixing and hydrogen reduction exhibits the formation of coarse W particles with agglomeration of the micro sized W powder on the surface. Conversely, in the powder mixture fabricated by ball milling and hydrogen reduction, a uniform distribution of fine W particles forming nano-micro sized hybrid structure is observed.

Keywords

References

  1. E. Lassner and W. D. Schubert: Tungsten, Springer Science & Business Media, New York (1999) 7.
  2. W. D. Klopp: J. Less-Common Met., 42 (1975) 261. https://doi.org/10.1016/0022-5088(75)90046-6
  3. C. H. Kim, S. Lee, B. K. Kim and J. S. Kim: J. Korean Powder Metall. Inst., 21 (2014) 447. https://doi.org/10.4150/KPMI.2014.21.6.447
  4. H. V. Atkinson and S. Davies: Metall. Mater. Trans. A, 31 (2000) 2981. https://doi.org/10.1007/s11661-000-0078-2
  5. J. Ma, J. Zhang, W. Liu and Z. Shen: J. Nucl. Mater., 438 (2013) 199. https://doi.org/10.1016/j.jnucmat.2013.03.042
  6. S. W. Kim, S. I. Lee, Y. D. Kim and I. H. Moon: Int. J. Refract. Metals Hard Mater., 21 (2003) 183. https://doi.org/10.1016/S0263-4368(03)00031-3
  7. R. Sarkar, P. Ghosal, M. Premkumar, A. K. Singh, K. Muraleedharan, A. Chakraborti, T. P. Bagchi and B. Sarma: Powder Metall., 51 (2008) 166. https://doi.org/10.1179/174329008X284787
  8. H. Wang, Z. Z. Fang, K. S. Hwang, H. Zhang and D. Siddle: Int. J. Refract. Metals Hard Mater., 28 (2010) 312. https://doi.org/10.1016/j.ijrmhm.2009.11.003
  9. J. P. Choi, H. G. Lyu, W. S. Lee and J. S. Lee: Powder Technol., 253 (2014) 596. https://doi.org/10.1016/j.powtec.2013.11.048
  10. O. V. Tolochko, O. G. Klimova, S. S. Ordanian, D. I. Cheong and Y. M. Kim: Rev. Adv. Mater. Sci., 21 (2009) 192.
  11. N. Y. Kwon, Y. K. Jeong and S. T. Oh: Korean J. Mater. Res., 27 (2017) 513. https://doi.org/10.3740/MRSK.2017.27.10.513
  12. N. W. Hurst, S. J. Gentry, A. Jones and B. D. McNicol: Catal. Rev. Sci. Eng., 24 (1982) 233. https://doi.org/10.1080/03602458208079654
  13. C. Suryanarayana: Prog. Mater. Sci., 46 (2001) 1. https://doi.org/10.1016/S0079-6425(99)00010-9
  14. D. G. Kim, S. T. Oh, H. Jeon, C. H. Lee and Y. D. Kim: J. Alloys Compd., 354 (2003) 239. https://doi.org/10.1016/S0925-8388(03)00007-0