Browse > Article
http://dx.doi.org/10.4150/KPMI.2017.24.5.384

Effect of Powder Mixing Process on the Characteristics of Hybrid Structure Tungsten Powders with Nano-Micro Size  

Kwon, Na-Yeon (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Jeong, Young-Keun (Graduate School of Convergence Science, Pusan National University)
Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of Powder Materials / v.24, no.5, 2017 , pp. 384-388 More about this Journal
Abstract
The effect of the mixing method on the characteristics of hybrid-structure W powder with nano and micro sizes is investigated. Fine $WO_3$ powders with sizes of ${\sim}0.6{\mu}m$, prepared by ball milling for 10 h, are mixed with pure W powder with sizes of $12{\mu}m$ by various mixing process. In the case of simple mixing with ball-milled $WO_3$ and micro sized W powders, $WO_3$ particles are locally present in the form of agglomerates in the surface of large W powders, but in the case of ball milling, a relatively uniform distribution of $WO_3$ particles is exhibited. The microstructural observation reveals that the ball milled $WO_3$ powder, heat-treated at $750^{\circ}C$ for 1 h in a hydrogen atmosphere, is fine W particles of ~200 nm or less. The powder mixture prepared by simple mixing and hydrogen reduction exhibits the formation of coarse W particles with agglomeration of the micro sized W powder on the surface. Conversely, in the powder mixture fabricated by ball milling and hydrogen reduction, a uniform distribution of fine W particles forming nano-micro sized hybrid structure is observed.
Keywords
Hybrid W powder; Nano and micro size; Ball milling; Hydrogen reduction of $WO_3$; Microstructure;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 E. Lassner and W. D. Schubert: Tungsten, Springer Science & Business Media, New York (1999) 7.
2 W. D. Klopp: J. Less-Common Met., 42 (1975) 261.   DOI
3 C. H. Kim, S. Lee, B. K. Kim and J. S. Kim: J. Korean Powder Metall. Inst., 21 (2014) 447.   DOI
4 H. V. Atkinson and S. Davies: Metall. Mater. Trans. A, 31 (2000) 2981.   DOI
5 J. Ma, J. Zhang, W. Liu and Z. Shen: J. Nucl. Mater., 438 (2013) 199.   DOI
6 S. W. Kim, S. I. Lee, Y. D. Kim and I. H. Moon: Int. J. Refract. Metals Hard Mater., 21 (2003) 183.   DOI
7 R. Sarkar, P. Ghosal, M. Premkumar, A. K. Singh, K. Muraleedharan, A. Chakraborti, T. P. Bagchi and B. Sarma: Powder Metall., 51 (2008) 166.   DOI
8 H. Wang, Z. Z. Fang, K. S. Hwang, H. Zhang and D. Siddle: Int. J. Refract. Metals Hard Mater., 28 (2010) 312.   DOI
9 O. V. Tolochko, O. G. Klimova, S. S. Ordanian, D. I. Cheong and Y. M. Kim: Rev. Adv. Mater. Sci., 21 (2009) 192.
10 N. Y. Kwon, Y. K. Jeong and S. T. Oh: Korean J. Mater. Res., 27 (2017) 513.   DOI
11 N. W. Hurst, S. J. Gentry, A. Jones and B. D. McNicol: Catal. Rev. Sci. Eng., 24 (1982) 233.   DOI
12 C. Suryanarayana: Prog. Mater. Sci., 46 (2001) 1.   DOI
13 D. G. Kim, S. T. Oh, H. Jeon, C. H. Lee and Y. D. Kim: J. Alloys Compd., 354 (2003) 239.   DOI
14 J. P. Choi, H. G. Lyu, W. S. Lee and J. S. Lee: Powder Technol., 253 (2014) 596.   DOI