• Title/Summary/Keyword: Nano Oxide

Search Result 1,159, Processing Time 0.026 seconds

Synthesis and Characterization of SiO2-ZnO Composites for Eco-Green Tire filler (친환경 타이어 충진제 적용을 위한 SiO2-ZnO 복합체 합성 및 특성평가)

  • Jeon, Sun Jeong;Song, Si Nae;Kang, Shin Jae;Kim, Hee Taik
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.357-363
    • /
    • 2015
  • The development of the environment-friendly tire that meets the standard requirements according to tire labeling system can be improved through using highly homogeneous silica immobilized zinc oxide nanoparticles. In this study, a considerable amount of nanoporous silica was essentially added into nano zinc oxide to improve the physiochemical properties of the formed composite. The introduction of nanoporous silica materials in the composite facilitates the improvement of the wear-resistance and increases the elasticity of the tread. Therefore, the introduction of nanoporous silica can replace carbon black as filler in the formation of composites with desirable properties for conventional green tire. Herein, mesoporous silica immobilized zinc oxide nanoparticle with desirable properties for rubber compounds was investigated. Composites with homogeneous dispersion were obtained in the absence of dispersants. The dispersion stability was controlled through varying the molar ratio, ageing time and mixing order of the reactants. A superior dispersion was achieved in the sample obtained using 0.03 mol of zinc precursor as it had the smallest grain size (50.5 nm) and then immobilized in silica aged for 10 days. Moreover, the specific surface area of this sample was the highest ($649m^2/g$).

Understanding Interfacial Charge Transfer Nonlinearly Boosted by Localized States Coupling in Organic Transistors (Carbon Nano Tube 및 산화그래핀을 첨가한 폴리우레아 복합재 제조 및 그 화학적 특성 분석)

  • Kim, Hyeongtae;Lee, Jihyun;An, Woo-Jin;Park, Jun Hong
    • Journal of Adhesion and Interface
    • /
    • v.22 no.4
    • /
    • pp.136-143
    • /
    • 2021
  • Polyurea has been investigated as a polymer matrix for composite materials because of its high mechanical strength. Although polyurea has a similar chemical structure to polyurethane, it has much higher strength and durability. In this study, the fabrication of polyurea composites reinforced with carbon nanotube (CNT) and graphene oxide (GO) is demonstrated to enhance the tensile strength of the glass fibers composite. Using FTIR and Raman spectroscopies, the chemical structures of polyurea, CNT, and GO are investigated. As a result, spectroscopy analysis reveals that the chemical structure of CNT, GO, and polyurea is maintained during the fabrication of the composite structure. Scanning electron microscopy reveals the uniform distribution of CNT and GO across the polyurea matrix. The reinforcement of 1 wt% CNT in polyurea enhances the tensile strength of CNT/polyurea composites. In contrast, the reinforcement of GO in polyurea induces the degradation of the tensile strength of GO/polyurea composites.

Fabrication and Electrical Insulation Property of Thick Film Glass Ceramic Layers on Aluminum Plate for Insulated Metal Substrate (알루미늄 판상에 글라스 세라믹 후막이 코팅된 절연금속기판의 제조 및 절연특성)

  • Lee, Seong Hwan;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.39-46
    • /
    • 2017
  • This paper presents the fabrication of ceramic insulation layer on metallic heat spreading substrate, i.e. an insulated metal substrate, for planar type heater. Aluminum alloy substrate is preferred as a heat spreading panel due to its high thermal conductivity, machinability and the light weight for the planar type heater which is used at the thermal treatment process of semiconductor device and display component manufacturing. An insulating layer made of ceramic dielectric film that is stable at high temperature has to be coated on the metallic substrate to form a heating element circuit. Two technical issues are raised at the forming of ceramic insulation layer on the metallic substrate; one is delamination and crack between metal and ceramic interface due to their large differences in thermal expansion coefficient, and the other is electrical breakdown due to intrinsic weakness in dielectric or structural defects. In this work, to overcome those problem, selected metal oxide buffer layers were introduced between metal and ceramic layer for mechanical matching, enhancing the adhesion strength, and multi-coating method was applied to improve the film quality and the dielectric breakdown property.

Microtube Light-Emitting Diode Arrays with Metal Cores

  • Tchoe, Youngbin;Lee, Chul-Ho;Park, Junbeom;Baek, Hyeonjun;Chung, Kunook;Jo, Janghyun;Kim, Miyoung;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.287.1-287.1
    • /
    • 2016
  • Three-dimensional (3-D) semiconductor nanoarchitectures, including nano- and micro- rods, pyramids, and disks, are emerging as one of the most promising elements for future optoelectronic devices. Since these 3-D semiconductor nanoarchitectures have many interesting unconventional properties, including the use of large light-emitting surface area and semipolar/nonpolar nano- or micro-facets, numerous studies reported on novel device applications of these 3-D nanoarchitectures. In particular, 3-D nanoarchitecture devices can have noticeably different current spreading characteristics compared with conventional thin film devices, due to their elaborate 3-D geometry. Utilizing this feature in a highly controlled manner, color-tunable light-emitting diodes (LEDs) were demonstrated by controlling the spatial distribution of current density over the multifaceted GaN LEDs. Meanwhile, for the fabrication of high brightness, single color emitting LEDs or laser diodes, uniform and high density of electrical current must be injected into the entire active layers of the nanoarchitecture devices. Here, we report on a new device structure to inject uniform and high density of electrical current through the 3-D semiconductor nanoarchitecture LEDs using metal core inside microtube LEDs. In this work, we report the fabrications and characteristics of metal-cored coaxial $GaN/In_xGa_{1-x}N$ microtube LEDs. For the fabrication of metal-cored microtube LEDs, $GaN/In_xGa_{1-x}N/ZnO$ coaxial microtube LED arrays grown on an n-GaN/c-Al2O3 substrate were lifted-off from the substrate by wet chemical etching of sacrificial ZnO microtubes and $SiO_2$ layer. The chemically lifted-off layer of LEDs were then stamped upside down on another supporting substrates. Subsequently, Ti/Au and indium tin oxide were deposited on the inner shells of microtubes, forming n-type electrodes of the metal-cored LEDs. The device characteristics were investigated measuring electroluminescence and current-voltage characteristic curves and analyzed by computational modeling of current spreading characteristics.

  • PDF

Dependence of the Diode Characteristics of ZnO/b-ZnO/p-Si(111) on the Buffer Layer Thickness and Annealing Temperature (버퍼막 두께 및 버퍼막 열처리 온도에 따른 ZnO/b-ZnO/p-Si(111)의 전기적 특성 변화 및 이종접합 다이오드 특성 평가)

  • Heo, Joo-Hoe;Ryu, Hyuk-Hyun
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.1
    • /
    • pp.50-56
    • /
    • 2011
  • In this study, the effects of ZnO buffer layer thickness and annealing temperature on the heterojunction diode, ZnO/b-ZnO/p-Si(111), were reported. The effects of those on the structural and electrical properties of zinc oxide (ZnO) films on ZnO buffered p-Si (111) substrate were also studied. Structural properties of ZnO thin films were studied by X-ray diffraction and I-V characteristics were measured by a semiconductor parameter analyzer. ZnO thin films with 70 nm thick buffer layer and annealing temperature of $700^{\circ}C$ showed the best c-axis preferred orientation. The best electrical property was found at the condition of buffer layer annealing temperature of $700^{\circ}C$ and 50nm thick ZnO buffer layer (resistivity: $2.58{\times}10^{-4}[{\Omega}-cm]$, carrier concentration: $1.16{\times}1020[cm^{-3}]$). The I-V characteristics for ZnO/b-ZnO/p-Si(111) heterojunction diode were improved with increasing buffer layer thickness at buffer layer annealing temperature of $700^{\circ}C$.

Effect of Reaction Temperature on the Geometry of Carbon Coils Formed by SF6 Flow Incorporation in C2H2 and H2 Source Gases (SF6-C2H2-H2 기체에 의해 생성된 탄소 코일 기하구조의 반응온도 효과)

  • Kim, Sung-Hoon
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.48-54
    • /
    • 2012
  • Carbon coils could be synthesized on nickel catalyst layer-deposited silicon oxide substrate using $C_2H_2$ and $H_2$ as source gases and SF6 as an additive gas under thermal chemical vapor deposition system. The geometries of as-grown carbon materials were investigated with increasing the reaction temperature as the increment of $25^{\circ}C$ from $650^{\circ}C$ up to $800^{\circ}C$. At $650^{\circ}C$, the embryos for carbon coils were formed. With increasing the reaction temperature to $700^{\circ}C$, the coil-type geometries were developed. Further increasing the reaction temperature to $775^{\circ}C$, the development of wave-like nano-sized coils, instead of nano-sized coils, and occasional appearance of micro-sized carbon coils could be observed. Fluorine in $SF_6$ additive may shrink the micro-sized coil diameter via the reduction of Ni catalyst size by fluorine's etching role. Finally, the preparation of the micro-sized carbon coils having the smaller coil diameters, compared with the previously reported ones, could be possible using $SF_6$ additive.

Residual Stress and Elastic Modulus of Y2O3 Coating Deposited by EB-PVD and its Effects on Surface Crack Formation

  • Kim, Dae-Min;Han, Yoon-Soo;Kim, Seongwon;Oh, Yoon-Suk;Lim, Dae-Soon;Kim, Hyung-Tae;Lee, Sung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.410-416
    • /
    • 2015
  • Recently, a new $Y_2O_3$ coating deposited using the EB-PVD method has been developed for erosion resistant applications in fluorocarbon plasma environments. In this study, surface crack formation in the $Y_2O_3$ coating has been analyzed in terms of residual stress and elastic modulus. The coating, deposited on silicon substrate at temperatures higher than $600^{\circ}C$, showed itself to be sound, without surface cracks. When the residual stress of the coating was measured using the Stoney formula, it was found to be considerably lower than the value calculated using the elastic modulus and thermal expansion coefficient of bulk $Y_2O_3$. In addition, amorphous $SiO_2$ and crystalline $Al_2O_3$ coatings were similarly prepared and their residual stresses were compared to the calculated values. From nano-indentation measurement, the elastic modulus of the $Y_2O_3$ coating in the direction parallel to the coating surface was found to be lower than that in the normal direction. The lower modulus in the parallel direction was confirmed independently using the load-deflection curves of a micro-cantilever made of $Y_2O_3$ coating and from the average residual stress-temperature curve of the coated sample. The elastic modulus in these experiments was around 33 ~ 35 GPa, which is much lower than that of a sintered bulk sample. Thus, this low elastic modulus, which may come from the columnar feather-like structure of the coating, contributed to decreasing the average residual tensile stress. Finally, in terms of toughness and thermal cycling stability, the implications of the lowered elastic modulus are discussed.

Superhydrophilicity of Titania Hybrid Coating Film Imposed by UV Irradiation without Heat-treatment (저온 경화형 초친수성 티타니아 하이브리드 졸의 제조와 친수성 특성 평가에 관한 연구)

  • Kim, Won-Soo;Park, Won-Kyu
    • Journal of Technologic Dentistry
    • /
    • v.29 no.1
    • /
    • pp.121-131
    • /
    • 2007
  • A preparation process's conditions of aqueous sol which contains anatase-type nano titania particles with photocatalyic properties was established by using Yoldas process, so called, DCS(Destabilization of Colloidal Solution) process in this study. And crystal size change and phase transformation of titania particles in aqueous titania sol depending on reaction conditions was investigated by a light scattering method and XRD analysis of frozen dried powders, respectively. This sol with photo catalytic nano titania particles was used to the following hydrophilic hybrid coating film's fabrication and its properties was evaluated. Subsequently, for coating film using the above mentioned aqueous titania sol, non-aqueous titania sol was prepared without any chemical additives and its time stability according to aging time was investigate. By using the above mentioned aqueous titania sol and non-aqueous sol, a complex oxide coating sol for metal and ceramic substrate and a organic-inorganic hybrid coating sol for polymer substrate was prepared and it's hydrophilicity depending on UV irradiation conditions was evaluated. As a conclusions, the following results were obtained. (1)Aqueous titania sol The average particle size of titania in formed aqueous titania sol was distributed between 20$\sim$90nm range depending on reaction conditions. And the crystal phase of titania powders obtained by frozen drying method was changed from amorphous state to anatase and subsequently transformed to rutile crystal phase and it is attributed to concentration gradient in aqueous sol. (2)Non-aqueous titania sol Non-aqueous titania sol was prepared using methanol as a solvent and a little distilled water for hydrolysis and nitric acid as a catalyst were used. The obtained non-aqueous titania sol was stable at room temperature for 20 days. Additionally, non-aqueous titania sol with addition of chealating reagent such as acethylaceton and ethylene glycol prolonged the stability of sol by six months. (3)Complex sol and hybrid sol with super hydrophilicity The above mentioned aqueous titania sol as a main photocataylic component and non-aqueous titania sol as a binder for coating process was used to prepare a complex sol used for metal, ceramic and wood material substrate and also to prepare the organic-inorganic hybrid sol for polymer substrate such as polycarbonate and polyethylene, in which process APMS(3-Aminopropyltrimethoxysilane), GPTS(3-Glycidoxypropyl-trimethoxysilane) as a hydrophilic silane compound and HEMA(2-Hydroxyethyl methacrylate) as a forming network in hybrid coating film were used. The hybrid coating film such as prepared through this process showed a superhydrophilicity below 1$10^{\circ}$ depending on processing conditions and a pencil's hardness over 6 H.

  • PDF

Thick Film Gas Sensor Based on PCB by Using Nano Particles (나노 입자를 이용한 PCB 기반 후막 가스 센서)

  • Park, Sung-Ho;Lee, Chung-Il;Song, Soon-Ho;Kim, Yong-Jun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.2 s.43
    • /
    • pp.59-63
    • /
    • 2007
  • This paper presented a low-cost thick film gas sensor module, which was based on simple PCB (Printed Circuit Board) process. The proposed sensor module included a $NO_2/H_2$ gas sensor, a relative humidity sensor, and a heating element. The $NO_2/H_2$ gas and relative humidity sensors were realized by screen-printing $SnO_2,\;BaTiO_3$ nano-powders on IDTS (Interdigital Transducer) of a PCB substrate, respectively. At first 1% $H_2$ gas flowed into the sensor chamber. After 4 min, air filled the chamber while $H_2$ gas flow stopped. This experiment was performed repeatedly. The Identical procedure was used for the $NO_2$ detection. The result for sensing $H_2$ gas showed the increase of voltage from 0.8V to 3.5V due to the conductance increase and its reaction response time by hydrogen flow was 65 sec. $NO_2$ sensing results showed 2.7 V voltage drop due to the conductance decrease and its response time was 3 sec through a voltage monitoring.

  • PDF

Synthesis and Electrochemical Performance of Mesoporous Hollow Sphere Shape LiMn2O4 using Silica Template (실리카 템플레이트를 이용하여 다공성 중공형태를 갖는 LiMn2O4 합성 및 전기화학적 특성 연구)

  • Ryu, Seong-Hyeon;Ryu, Kwang-Sun
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.3
    • /
    • pp.184-190
    • /
    • 2011
  • $LiMn_2O_4$ with mesoporous hollow sphere shape was synthesized by precipitation method with silica template. The synthesized $LiMn_2O_4$ has nanosized first particle and mesoporous hollow sphere shape. Silica template was removed by chemical etching method using NaOH solution. When the concentration of NaOH solution was increased, first particle size of manganese oxide was decrease and confirmed mesoporous hollow shpere shape. X-ray diffraction(XRD) patterns revealed that the synthesized samples has spinel structure with Fd3m space group. In case the ratio of silica and maganese salt increased, the size of first particles was decreased. The tetragoanal $LiMn_2O_4$ with micron size was synthesized at ratio of silica and manganese salt over 1 : 9. The prepared samples were assembled as cathode materials of Li-ion battery with 2032 type coin cell and their electrochemical properties are examined by charge-discharge and cyclic performance. Electrochemical measurements show that the nano-size particles had lower capacity than micron-size particles. But, cyclic performance of nano-size particles had better than that of micron-size particles.