Browse > Article
http://dx.doi.org/10.5757/JKVS.2011.20.1.050

Dependence of the Diode Characteristics of ZnO/b-ZnO/p-Si(111) on the Buffer Layer Thickness and Annealing Temperature  

Heo, Joo-Hoe (Department of Nano Systems Engineering, Inje University)
Ryu, Hyuk-Hyun (Department of Nano Systems Engineering, Inje University)
Publication Information
Journal of the Korean Vacuum Society / v.20, no.1, 2011 , pp. 50-56 More about this Journal
Abstract
In this study, the effects of ZnO buffer layer thickness and annealing temperature on the heterojunction diode, ZnO/b-ZnO/p-Si(111), were reported. The effects of those on the structural and electrical properties of zinc oxide (ZnO) films on ZnO buffered p-Si (111) substrate were also studied. Structural properties of ZnO thin films were studied by X-ray diffraction and I-V characteristics were measured by a semiconductor parameter analyzer. ZnO thin films with 70 nm thick buffer layer and annealing temperature of $700^{\circ}C$ showed the best c-axis preferred orientation. The best electrical property was found at the condition of buffer layer annealing temperature of $700^{\circ}C$ and 50nm thick ZnO buffer layer (resistivity: $2.58{\times}10^{-4}[{\Omega}-cm]$, carrier concentration: $1.16{\times}1020[cm^{-3}]$). The I-V characteristics for ZnO/b-ZnO/p-Si(111) heterojunction diode were improved with increasing buffer layer thickness at buffer layer annealing temperature of $700^{\circ}C$.
Keywords
ZnO; Buffer layer; ZnO/b-ZnO/p-Si(111) heterojunction diode; X-ray diffraction; Resistivity; Carrier concentration; I-V;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. M. Gaskov and M. N. Rumyantseva, Russ. J. Appl. Chem. 74, 440 (2001).   DOI
2 U. Rau and M. Schmidt, Thin Solid Films 387, 141 (2001).   DOI
3 J. H. Lee, J. Y. Lee, J. J. Kim, H. S. Kim, N. W. Jang, W. J. Lee, and C. R. Cho, J. Korean Phys. Soc. 56, 1, 429 (2010).   과학기술학회마을   DOI
4 J. Y. Lee, C. R. Kim, J. H. Heo, C. M. Shin, J. H. Park, T. M. Lee, H. Ryu, J. H. Chang, C. S. Son, B. C. Shin, W. J. Lee, S. T. Tan, J. L. Zhao, and X. W. Sun, J. Korean Phys. Soc. 55, 6, 2556 (2009).   DOI
5 S. T. Tan, B. J. Chen, X. W. Sun, and W. J. Fan, J. Appl. Phys. 98, 013505 (2005).   DOI
6 J. Song and S. Lim, J. Phys. Chem. C, 111, 596 (2007).   DOI
7 Y. Zhang, G. Du, B. Liu, H. C. Zhu, T. Yang, W. Li, D. Liu, and S. Yang, J. Cryst. Growth. 262, 456 (2004).   DOI   ScienceOn
8 C. R. Kim, J. Y. Lee, C. M. Shin, J. Y. Leem, H. Ryu, J. H. Chang, H. C. Lee, C. S. Son, W. J. Lee, W. G. Jung, S. T. Tan, J. L. Zhao, and X. W. Sun, Solid State Commun. 148, 395 (2008).   DOI
9 Y. Zhang, G. Du, X. Yang, B. Zhao, Y. Ma, T. Yang, H. C. Ong, D. Liu, and S. Yang, Semicond. Sci. Technol. 19, 755 (2004).   DOI
10 Simon L. King, and J. G. E. Gardeniers, Appl. Surf. Sci. 96, 811 (1996).   DOI
11 Y. L. Liu and Y. C. Liu, Appl. Phys. B 322, 1, 31 (2000).
12 T. Soki, Y. Hatanaka, and D. C. Look, Appl. Phys. Lett. 76, 3257 (2000).   DOI
13 J. P. Kar, S. N. Das, J. H. Choi, Y. A. Lee, T. Y. Lee, and J. M. Myoung, J. Cryst. Growth 311, 3305 (2009).   DOI