• Title/Summary/Keyword: Nano Oxide

Search Result 1,159, Processing Time 0.033 seconds

Novel solvothermal approach to hydrophilic nanoparticles of late transition elements and its evaluation by nanoparticle tracking analysis

  • Dutilleul, Marion Collart;Seisenbaeva, Gulaim A.;Kessler, Vadim G.
    • Advances in nano research
    • /
    • v.2 no.2
    • /
    • pp.77-88
    • /
    • 2014
  • Solvothermal treatment of late transition metal acetylacetonates in a novel medium composed either of pure acetophenone or acetophenone mixtures with amino alcohols offers a general approach to uniform hydrophilic metal nanoparticles with high crystallinity and low degree of aggregation. Both pure metal and mixed-metal particles can be accesses by this approach. The produced materials have been characterized by SEM-EDS, TEM, FTIR in the solid state and by Nanoparticle Tracking Analysis in solutions. The chemical mechanisms of the reactions producing nanoparticles has been followed by NMR. Carrying out the process in pure acetophenone produces palladium metal, copper metal with minor impurity of $Cu_2O$, and NiO. The synthesis starting from the mixtures of Pd and Ni acetylacetonates with up to 20 mol% of Pd, renders in minor yield the palladium-based metal alloy along with nickel oxide as the major phase. Even the synthesis starting from a mixed solution of $Cu(acac)_2$ and $Ni(acac)_2$ produces oxides as major products. The situation is improved when aminoalcohols such as 2-aminoethanol or 2-dimethylamino propanol are added to the synthesis medium. The particles in this case contain metallic elements and pairs of individual metals (not metal alloys) when produced from mixed precursor solutions in this case.

Fabrication of Nanopatterned PDMS Elastic Stamp Mold Using Surface Treatment of Nanotemplate (나노템플레이트 표면처리를 통한 나노패턴이 형성된 PDMS 탄성 스탬프 몰드 제작)

  • Park, Yong Min;Seo, Sang Hyun;Seo, Young Ho;Kim, Byeong Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.38-42
    • /
    • 2015
  • Polydimethylsiloxane (PDMS) is a widely used material for replicating micro-structures because of its transparency, deformability, and easy fabrication. At the nanoscale, however, it is hard to fill a nanohole template with uncured PDMS. This paper introduces several simple methods by changing the surface energy of a nanohole template and PDMS elastomer for replicating 100nm-scale structures. In the case of template, pristine anodic aluminum oxide (AAO), hydrophobically treated AAO, and hydrophillically treated AAO are used. For the surface energy change of the PDMS elastomer, a hydrophilic additive and dilution solvent are added in the PDMS prepolymer. During the molding process, a simple casting method is used for all combinations of the treated template and modified PDMS. The nanostructured PDMS surface was investigated with a scanning electron microscope after the molding process for verification.

Inductively coupled plasma etching of SnO2 as a new absorber material for EUVL binary mask

  • Lee, Su-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.124-124
    • /
    • 2010
  • Currently, extreme ultraviolet lithography (EUVL) is being investigated for next generation lithography. EUVL is one of competitive lithographic technologies for sub-22nm fabrication of nano-scale Si devices that can possibly replace the conventional photolithography used to make today's microcircuits. Among the core EUVL technologies, mask fabrication is of considerable importance due to the use of new reflective optics having a completely different configuration compared to those of conventional photolithography. Therefore, new materials and new mask fabrication process are required for high performance EUVL mask fabrication. This study investigated the etching properties of SnO2 (Tin Oxide) as a new absorber material for EUVL binary mask. The EUVL mask structure used for etching is SnO2 (absorber layer) / Ru (capping / etch stop layer) / Mo-Si multilayer (reflective layer) / Si (substrate). Since the Ru etch stop layer should not be etched, infinitely high selectivity of SnO2 layer to Ru ESL is required. To obtain infinitely high etch selectivity and very low LER (line edge roughness) values, etch parameters of gas flow ratio, top electrode power, dc self - bias voltage (Vdc), and etch time were varied in inductively coupled Cl2/Ar plasmas. For certain process window, infinitely high etch selectivity of SnO2 to Ru ESL could be obtained by optimizing the process parameters. Etch characteristics were measured by on scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analyses. Detailed mechanisms for ultra-high etch selectivity will be discussed.

  • PDF

High rate deposition and mechanical properties of SiOx film on PET and PC polymers by PECVD with the dual frequencies UHF and HF at low temperature

  • Jin, Su-B.;Choi, Yoon-S.;Choi, In-S.;Han, Jeon-G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.180-180
    • /
    • 2010
  • The design and implementation of high rate deposition process and anti-scratch property of silicon oxide film by PECVD with UHF power were investigated according to the effect of UHF input power with HF bias. New regime of high rate deposition of SiOx films by hybrid plasma process was investigated. The dissociation of OMCTS (C8H24Si4O4) precursor was controlled by plasma processes. SiOx films were deposited on polyethylene terephthalate (PET) and polycarbonate substrate by plasma enhanced chemical vapor deposition (PECVD) using OMCTS with oxygen carrier gas. As the input energy increased, the deposition rate of SiOx film increased. The plasma diagnostics were performed by optical emission spectrometry. The deposition rate was characterized by alpha-step. The mechanical properties of the coatings were examined by nano-indenter and pencil hardness, respectively. The deposition rate of the SiOx films could be controlled by the appropriate intensity of excited neutrals, ionized atoms and UHF input power with HF bias at room temperature, as well as the dissociation of OMCTS.

  • PDF

Gallium Nitride Nanoparticle Synthesis Using Non-thermal Plasma with N2 Gas

  • Yu, Gwang-Ho;Kim, Jeong-Hyeong;Yu, Sin-Jae;Ryu, Hyeon;Seong, Dae-Jin;Sin, Yong-Hyeon;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.236.1-236.1
    • /
    • 2014
  • Compounds of Ga, such as gallium oxide (Ga2O3) and gallium nitride (GaN), are of interest due to its unique properties in semiconductor application. In particular, GaN has the potentially application for optoelectronic device such as light-emitting diodes (LEDs) and laser diodes (LDs) [1]. Nanoparticle is an interesting material due to its unique properties compared to the bulk equivalents. In this report, we develop a synthesizing method for gallium nitride nanoparticle using non-thermal plasma. For gallium source, the gallium is heated by thermal conduction of tungsten boat which is heated by eddy current induced from RF current in antenna. Nitrogen source for nanoparticle synthesis are from inductively coupled plasma with N2 gas. The synthesized nano particles are analyzed using field-emission scanning microscope (FESEM), transmission electron microscope (TEM) and x-ray photoelectron spectroscopy (XPS). The synthesized particles are investigated and discussed in wide range of experiment conditions such as flow rate, pressure and RF power.

  • PDF

Improved conductivity of transparent single-wall carbon nanotube-based thin films on glass

  • Min, Hyeong-Seop;Choe, Won-Guk;Kim, Sang-Sik;Lee, Jeon-Guk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.55.1-55.1
    • /
    • 2010
  • 차세대 디스플레이용 전극 재료는 투명하면서도 낮은 저항값을 가져야 하는 투명 전극 재료로 금속, 금속산화물, 전도성 고분자, 탄소재료 등을 들 수 있다. 금속재료는 전도도는 우수하지만, 낮은 투과도로 투명전극 재료로 적절하지 않고, 대표적인 금속산화물 재료인 indium tin oxide (ITO)의 경우, 우수한 투과성과 낮은 면저항을 기반으로 차세대 디스플레이용 전극으로 현재 사용되고 있다. 하지만 ITO 박막은 휘거나 접을 때 기계적 안정성이 취약한 문제점을 나타내고 있다. 이러한 문제점을 극복하기 위해 전도성과 탄성계수가 높고, 저온에서 대면적 공정이 가능한 CNT을 투명 박막 전극 연구가 활발히 진행되고 있다. 하지만 투명전극 제조시, 탄소 나노튜브 간의 van der waals 인력에 의한 응집 현상으로 인한 분산의 불안정성과 분산제 사용으로 인하여 탄소 나노튜브 박막전극의 전기적, 광학적 특성이 저하를 야기한다. 이에 본 실험에서는 아크 방전 공정으로 합성한 SWCNT 분산액을 사용하여 spray coating 방법으로 glass 위에 박막을 형성하였다. SWCNT 투명 박막 전극 위에 DC sputtering을 이용하여 얇은Ni를 도포한 후, $450{\sim}500^{\circ}C$, ethylene gas 분위기의 thermal CVD방법으로 Carbon NanoFibers (CNFs)를 생성시킴과 동시에 분산제를 burning out하였다. CNF 성장 전후의 투명 박막의 전기적 특성은 four point probe를 이용하여 면저항과 UV-vis 장비를 이용하여 가시광선 영역에서의 광학적 투과도를 측정 비교하였다.

  • PDF

High-Efficiency Heterojunction with Intrinsic Thin-Layer Solar Cells: A Review

  • Dao, Vinh Ai;Kim, Sangho;Lee, Youngseok;Kim, Sunbo;Park, Jinjoo;Ahn, Shihyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.1 no.2
    • /
    • pp.73-81
    • /
    • 2013
  • Heterojunction with Intrinsic Thin-layer (HIT) solar cells are currently an important subject in industrial trends for thinner solar cell wafers due to the low-temperature of production processes, which is around $200^{\circ}C$, and due to their high-efficiency of 24.7%, as reported by the Panasonic (Sanyo) group. The use of thinner wafers and the enhancement of cell performance with fabrication at low temperature have been special interests of the researchers. The fundamental understanding of the band bending structures, choice of materials, fabrication process, and nano-scale characterization methods to provide necessary understanding of the interface passivation mechanisms, emitter properties, and requirements for transparent oxide conductive layers is presented in this review. This information should be used for the performance characterization of the developing technologies for HIT solar cells.

Microstructure and Mechanical Properties of ODS Ferrite Produced by Reactive Milling for the MSR Suppression (MSR (Mechanically induced Self-sustaining Reaction)이 억제된 반응성 밀링에 의해 제조된 분산강화 페라이트의 미세조직과 기계적 특성)

  • Hwang, Seung J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.6
    • /
    • pp.279-287
    • /
    • 2013
  • Oxide Dispersion Strengthened (ODS) Fe with $Al_2O_3$ dispersoid was successfully produced by reactive milling with a mixture of Fe, $Fe_3O_4$ (Magnetite), $Fe_2O_3$ (Hematite) and Al reactants at cryogenic temperature. The milled powders were consolidated by Vacuum Hot Press (HP) at 1323 K, and the consolidated materials were characterized by Transmission Electron Microscopy (TEM), Scanning Transmission Electron Microscopy (STEM), and Energy Dispersive Spectroscopy (EDS); the yield strength and the hardness of the consolidated materials were determined by compressive test and Vickers hardness test at room temperature. The grain size of the materials was estimated by X-ray Diffraction technique using the scherrer's formula. The TEM observations showed that the microstructure was comprised with a mixture of nanocrystalline Fe matrix and $Al_2O_3$ nano-dispersoids with a bimodal size distribution; the 0.2% off-set yield strength of the materials was as high as $758{\pm}29$ MPa and the Vickers hardness was $358{\pm}2$. The effect of the cryogenic milling and addition of extra Fe powder was discussed on the suppression of MSR (Mechanically induced Self-sustaining Reaction) for the desired microstructural evolution of ODS alloys.

Gas Transport Behavior of Modified Carbon Nanotubes/Hydrogel Composite Membranes (개질된 탄소나노튜브/하이드로겔 복합막의 기체 투과 특성)

  • Yoon, Hee Wook;Lee, Hee Dae;Park, Ho Bum
    • Membrane Journal
    • /
    • v.23 no.5
    • /
    • pp.375-383
    • /
    • 2013
  • Nanomaterials having large surface area, uniform dimensions or pores can be utilized in various membrane applications Amongst them, many studies have been focused on nanocarbon materials: graphene, graphene oxide and carbon nanotubes. Carbon nanotubes, one-dimensional structure, have excellent characteristics in thermal, chemical and mechanical strength properties. However, carbon nanotubes was mainly used to reinforce mechanical properties of polymer materials in previous applications. In contrast to previous studies, we focused on modified carbon nanotubes/polyethylene glycol diacrylate (PEGDA) composite membrane preparation for improvement of permeability and selectivity on gas separation.

Modified Principal Component Analysis for Real-Time Endpoint Detection of SiO2 Etching Using RF Plasma Impedance Monitoring

  • Jang, Hae-Gyu;Kim, Dae-Gyeong;Chae, Hui-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.32-32
    • /
    • 2011
  • Plasma etching is used in microelectronic processing for patterning of micro- and nano-scale devices. Commonly, optical emission spectroscopy (OES) is widely used for real-time endpoint detection for plasma etching. However, if the viewport for optical-emission monitoring becomes blurred by polymer film due to prolonged use of the etching system, optical-emission monitoring becomes impossible. In addition, when the exposed area ratio on the wafer is small, changes in the optical emission are so slight that it is almost impossible to detect the endpoint of etching. For this reason, as a simple method of detecting variations in plasma without contamination of the reaction chamber at low cost, a method of measuring plasma impedance is being examined. The object in this research is to investigate the suitability of using plasma impedance monitoring (PIM) with statistical approach for real-time endpoint detection of $SiO_2$ etching. The endpoint was determined by impedance signal variation from I-V monitor (VI probe). However, the signal variation at the endpoint is too weak to determine endpoint when $SiO_2$ film on Si wafer is etched by fluorocarbon plasma on inductive coupled plasma (ICP) etcher. Therefore, modified principal component analysis (mPCA) is applied to them for increasing sensitivity. For verifying this method, detected endpoint from impedance analysis is compared with optical emission spectroscopy (OES). From impedance data, we tried to analyze physical properties of plasma, and real-time endpoint detection can be achieved.

  • PDF