• Title/Summary/Keyword: Nano CT

Search Result 38, Processing Time 0.023 seconds

Improved Electrochemical Performance and Minimized Residual Li on LiNi0.6Co0.2Mn0.2O2 Active Material Using KCl (KCl을 사용한 LiNi0.6Co0.2Mn0.2O2계 양극활물질의 잔류리튬 저감 및 전기화학특성 개선)

  • Yoo, Gi-Won;Shin, Mi-Ra;Shin, Tae-Myung;Hong, Tae-Whan;Kim, Hong-kyeong
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.1
    • /
    • pp.7-12
    • /
    • 2017
  • Using a precursor of $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ as a starting material, a surface-modified cathode material was obtained by coating with KCl, where the added KCl reduces residual Li compounds such as $Li_2CO_3$ and LiOH, on the surface. The resulting electrochemical properties were investigated. The amounts of $Li_2CO_3$ and LiOH decreased from 8,464 ppm to 1,639 ppm and from 8,088 ppm to 6,287 ppm, respectively, with 1 wt% KCl added $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ that had been calcined at $800^{\circ}C$. X-ray diffraction results revealed that 1 wt% of KCl added $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ did not affect the parent structure but enhanced the development of hexagonal crystallites. Additionally, the charge transfer resistance ($R_{ct}$) decreased dramatically from $225{\Omega}$ to $99{\Omega}$, and the discharge capacity increased to 182.73mAh/g. Using atomic force microscopy, we observed that the surface area decreased by half because of the exothermic heat released by the Li residues. The reduced surface area protects the cathode material from reacting with the electrolyte and hinders the development of a solid electrolyte interphase (SEI) film on the surface of the oxide particles. Finally, we found that the introduction of KCl into $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ is a very effective method of enhancing the electrochemical properties of this active material by reducing the residual Li. To the best of our knowledge, this report is the first to demonstrate this phenomenon.

Free vibration of electro-magneto-thermo sandwich Timoshenko beam made of porous core and GPLRC

  • Safari, Mohammad;Mohammadimehr, Mehdi;Ashrafi, Hossein
    • Advances in nano research
    • /
    • v.10 no.2
    • /
    • pp.115-128
    • /
    • 2021
  • In this article, free vibration behavior of electro-magneto-thermo sandwich Timoshenko beam made of porous core and Graphene Platelet Reinforced Composite (GPLRC) in a thermal environment is investigated. The governing equations of motion are derived by using the modified strain gradient theory for micro structures and Hamilton's principle. The magneto electro are under linear function along the thickness that contains magnetic and electric constant potentials and a cosine function. The effects of material length scale parameters, temperature change, various distributions of porous, different distributions of graphene platelets and thickness ratio on the natural frequency of Timoshenko beam are analyzed. The results show that an increase in aspect ratio, the temperature change, and the thickness of GPL leads to reduce the natural frequency; while vice versa for porous coefficient, volume fractions and length of GPL. Moreover, the effect of different size-dependent theories such as CT, MCST and MSGT on the natural frequency is investigated. It reveals that MSGT and CT have most and lowest values of natural frequency, respectively, because MSGT leads to increase the stiffness of micro Timoshenko sandwich beam by considering three material length scale parameters. It is seen that by increasing porosity coefficient, the natural frequency increases because both stiffness and mass matrices decreases, but the effect of reduction of mass matrix is more than stiffness matrix. Considering the piezo magneto-electric layers lead to enhance the stiffness of a micro beam, thus the natural frequency increases. It can be seen that with increasing of the value of WGPL, the stiffness of microbeam increases. As a result, the value of natural frequency enhances. It is shown that in hc/h = 0.7, the natural frequency for WGPL = 0.05 is 8% and 14% less than its for WGPL = 0.06 and WGPL = 0.07, respectively. The results show that with an increment in the length and width of GPLs, the natural frequency increases because the stiffness of micro structures enhances and vice versa for thickness of GPLs. It can be seen that the natural frequency for aGPL = 25 ㎛ and hc/h = 0.6 is 0.3% and 1% more than the one for aGPL = 5 ㎛ and aGPL = 1 ㎛, respectively.

Fe3O4 magnetic nanoparticles provide a novel alternative strategy for Staphylococcus aureus bone infection

  • Youliang, Ren;Jin, Yang;Jinghui, Zhang;Xiao, Yang;Lei, Shi;Dajing, Guo;Yuanyi, Zheng;Haitao, Ran;Zhongliang, Deng;Lei, Chu
    • Advances in nano research
    • /
    • v.13 no.6
    • /
    • pp.575-585
    • /
    • 2022
  • Due to its biofilm formation and colonization of the osteocyte-lacuno canalicular network (OLCN), Staphylococcus aureus (S.aureus) implant-associated bone infection (SIABI) is difficult to cure thoroughly, and may occur recurrently subsequently after a long period dormant. It is essential to explore an alternative therapeutic strategy that can eradicate the pathogens in the infected foci. To address this, the polymethylmethacrylate (PMMA) bone cement and Fe3O4 nanoparticles compound cylinder were developed as implants based on their size and mechanical properties for the alternative magnetic field (AMF) induced thermal ablation, The PMMA mixed with optimized 2% Fe3O4 nanoparticles showed an excellent antibacterial efficacy in vitro. It was evaluated by the CFU, CT scan and histopathological staining on a rabbit 1-stage transtibial screw model. The results showed that on week 7, the CFU of infected soft tissue and implants, and the white blood cells (WBCs) of the PMMA+2% Fe3O4+AMF group decreased significantly from their controls (p<0.05). PMMA+2% Fe3O4+AMF group did not observe bone resorption, periosteal reaction, and infectious reactive bone formation by CT images. Further histopathological H&E and Gram Staining confirmed there was no obvious inflammatory cell infiltration, neither pathogens residue nor noticeably burn damage around the infected screw channel in the PMMA+2% Fe3O4+AMF group. Further investigation of nanoparticle distributions in bone marrow medullary and vital organs of heart, liver, spleen, lung, and kidney. There were no significantly extra Fe3O4 nanoparticles were observed in the medullary cavity and all vital organs either. In the current study, PMMA+2% Fe3O4+AMF shows promising therapeutic potential for SIABI by providing excellent mechanical support, and promising efficacy of eradicating the residual pathogenic bacteria in bone infected lesions.

Synthesis and radiolabeling of PEGylated dendrimer-G2-Gemifloxacin with 99mTc to Biodistribution study in rabbit

  • Mohtavinejad, Naser;Dolatshahi, Shaya;Amanlou, Massoud;Ardestani, Mehdi Shafiee;Asadi, Mehdi;Pormohammad, Ali
    • Advances in nano research
    • /
    • v.10 no.5
    • /
    • pp.461-470
    • /
    • 2021
  • Infection is one of the major mortality causes throughout the globe. Nuclear medicine plays an important role in diagnosis of deep infections such as osteomyelitis, arthritis infection, heart valve and heart prosthesis infections. Techniques such as labeled leukocytes are sensitive and selective for tracking the inflammations but they are not suitable for differentiating infection from inflammation. Anionic linear-globular dendrimer-G2 was synthesized then conjugation to gemifloxacin antibiotic. The structures were identified by FT-IR, 1H-NMR, C-NMR, LC-MS and DLS. The toxicity of gemifloxacin and dendrimer-gemifloxacin complex was compared by MTT test. Dendrimer-G2-gemifloxacin was labeled by Technetium-99m and its in-vitro stability and radiochemical purity were investigated. In-vivo biodistribution and SPECT imaging were studied in a rabbit model. Identify and verify the structure of the each object was confirmed by FT-IR, 1H-NMR, C-NMR and LC-MS, also, the size and charge of this compound were 128 nm and -3/68 mv respectively. MTT test showed less toxicity of the dendrimer-G2-gemifloxacin than free gemifluxacin (P < 0.001). Radiochemical yield was > %98. Human serum stability was 84% up to 24 h. Biodistribution study at 50 min, 24 and 48 h showed that the complex is significantly absorbed by the intestine and accumulation in the lungs and affects them, finally excreted through the kidneys, biodistribution results are consistent with results from full image means of SPECT/CT technique.

Electrochemical Properties of Sub-micron Size Si Anode Materials Distributed by Wet Sedimentation Method (습식 분급으로 입도 조절된 서브 마이크론 크기의 Si 음극활물질의 전기화학적 특성 분석)

  • Jin-Seong Seo;Hyun-Su Kim;Byung-Ki Na
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.39-44
    • /
    • 2023
  • In this study, the particle size of Si polycrystals was controlled through wet-sedimentation method, and changes in the capacity and cyclic characteristics of the Si anode material according to the particle size were observed. After wet-sedimentation of Si particles pulverized by a vibration mill, the non-uniform particle distribution of Si was uniformly controlled. The d50 of a sample in which Si was sedimented for 24 hours decreased to 0.50 ㎛. As a result of the electrochemical characteristic analysis, the Rct value representing the resistance in the electrode was significantly reduced due to the decrease in particle size. The unclassified Si sample exhibited a discharge capacity of 2,869 mAh/g in the first cycle, and decreased to 85.7 mAh/g after 100 cycles. The sample in which Si was classified for 24 hours showed a capacity of 3,394 mAh/g initially, and maintained a capacity of 1,726 mAh/g after 100 cycles. As the size of the Si particles decreased, the discharge capacity increased and the cycle life was also increased.

Ultrasmall Polyethyleneimine-Gold Nanoparticles with High Stability (높은 안정성을 갖는 초미립 폴리에틸렌이민-금 나노입자)

  • Kim, Eun-Jung;Yeum, Jeong-Hyun;Ghim, Han-Do;Lee, Se-Guen;Lee, Ga-Hyun;Lee, Hyun-Ju;Han, Sang-Ik;Choi, Jin-Hyun
    • Polymer(Korea)
    • /
    • v.35 no.2
    • /
    • pp.161-165
    • /
    • 2011
  • This study is related to the preparation of biocompatible gold nanoparticles (AuNPs) which are stable in aqueous solutions for a long time. Ultrasmall polyethyleneimine (PEI)-capped AuNPs (PEI-AuNPs) with limited agglomeration were prepared in aqueous solutions at room temperature, which were based on the roles of PEI as a reductant and a stabilizer. PEI-AuNPs with an average size of 8~12 nm formed highly stable nanocolloids with an average hydrodynamic cluster size of around 50 nm in aqueous media. At a low concentration of metal precursor hydrogen tetrachloroaurate (III), the particle size was reduced noticeably. The typical peaks of gold were observed in the X-ray diffraction pattern of AuNPs. The cell viability of 98% was obtained in the case of PEI-AuNPs, while PEI was cytotoxic. The PEI-AuNP is considered to be a potential candidate as a contrast agent for computed tomography.

SINUS FLOOR GRAFTING USING CALCIUM PHOSPHATE NANO-CRYSTAL COATED XENOGENIC BONE AND AUTOLOGOUS BONE (칼슘포스페이트 나노-크리스탈이 코팅된 골이식재와 자가골을 병행 이용한 상악동 거상술)

  • Pang, Kang-Mi;Li, Bo-Han;Alrashidan, Mohamed;Yoo, Sang-Bae;Sung, Mi-Ae;Kim, Soung-Min;Jahng, Jeong-Won;Kim, Myung-Jin;Ko, Jea-Seung;Lee, Jong-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.3
    • /
    • pp.243-248
    • /
    • 2009
  • Purpose: Rehabilitation of the edentulous posterior maxilla with dental implants often poses difficulty because of insufficient bone volume caused by pneumatization of the maxillary sinus and by crestal bone resorption. Sinus grafting technique was developed to increase the vertical height to overcome this problem. The present study was designed to evaluate the sinus floor augmentation with anorganic bovine bone (Bio-$cera^{TM}$) using histomorphometric and clinical measures. Patients and methods: Thirteen patients were involved in this study and underwent total 14 sinus lift procedures. Residual bone height was ${\geq}2mm$ and ${\leq}6mm$. Lateral window approach was used, with grafting using Bio-$cera^{TM}$ only(n=1) or mixed with autogenous bone from ramus and/or maxillary tuberosity(n=13). After 6 months of healing, implant sites were created with 3mm diameter trephine and biopsies taken for histomorphometric analysis. The parameters assessed were area fraction of new bone, graft material and connective tissue. Immediate and 6 months after grafting surgery, and 6 months after implantation, computed tomography (CT) was taken and the sinus graft was evaluated morphometric analysis. After implant installation at the grafted area, the clinical outcome was checked. Results: Histomorphometry was done in ten patients.Bio-$cera^{TM}$ particles were surrounded by newly formed bone. The graft particles and newly formed bone were surrounded by connective tissue including small capillaries in some fields. Imaging processing revealed $24.86{\pm}7.59%$ of new bone, $38.20{\pm}13.19%$ connective tissue, and $36.92{\pm}14.51%$ of remaining Bio-$cera^{TM}$ particles. All grafted sites received an implant, and in all cases sufficient bone height was achieved to install implants. The increase in ridge height was about $15.9{\pm}1.8mm$ immediately after operation (from 13mm to 19mm). After 6 months operation, ridge height was reduced about $11.5{\pm}13.5%$. After implant installation, average marginal bone loss after 6 months was $0.3{\pm}0.15mm$. Conclusion: Bio-$cera^{TM}$ showed new bone formation similar with Bio-$Oss^{(R)}$ histomorphometrically and appeared to be an effective bone substitute in maxillary sinus augmentation procedure with the residual bone height from 2 to 6mm.

Survey of Caffeine levels in the Favorite Diets of Children (어린이 기호식품 중 카페인 함량에 대한 조사)

  • Lee, E-Na;Kim, Hee-Jin;Im, Ji-Young;Kim, Jeoung-A;Park, Hye-Young;Ryu, Ju-Young;Ko, Kwang-Rack;Kim, Hyung-Sik
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.3
    • /
    • pp.173-178
    • /
    • 2007
  • Children may respond differently to the caffeine from adults because they have different physiologic makeup and are functionally immature in terms of hepatic and renal function; this leads to the slower clearance of caffeine in early life. Therefore, children are often assumed to be more susceptible to caffeine effects. Alarge number of food supplements may interfere with these processes, and therefore caffeine exposure may have more serious consequences for children than for adults, irrespective of sensitivity. However, there has never been a national dietary survey on caffeine intakes in children. The purpose of our study was to identify caffeine intakes and beverage sources of caffeine in a representative sample of children in Busan, Korea. Caffeine intakes were based only on beverages included in the Continuing Surveys of Food Intakes by individuals. The caffeine content of the beverages ranged from 2.8 to 65.2mg/100ml for cola, soft drinks, and teas. Caffeine was not completely absent from caffeine-free colas, juice, and milk. In this study, cola-type beverages were an important dietary source of caffeine in the children. Daily caffeine intake for children was estimated to range from 12.5 to 250 mg/day. In general, the acceptable daily intake (ADI) of caffeine should cover the entire population including children. Therefore, special considerations should be needed regarding the consumption of soft drinks containing caffeine to children below the 12 years of age.