DOI QR코드

DOI QR Code

Electrochemical Properties of Sub-micron Size Si Anode Materials Distributed by Wet Sedimentation Method

습식 분급으로 입도 조절된 서브 마이크론 크기의 Si 음극활물질의 전기화학적 특성 분석

  • Jin-Seong, Seo (Department of Chemical Engineering, Chungbuk National University) ;
  • Hyun-Su, Kim (Department of Chemical Engineering, Chungbuk National University) ;
  • Byung-Ki, Na (Department of Chemical Engineering, Chungbuk National University)
  • 서진성 (충북대학교 화학공학과) ;
  • 김현수 (충북대학교 화학공학과) ;
  • 나병기 (충북대학교 화학공학과)
  • Received : 2022.01.28
  • Accepted : 2022.10.17
  • Published : 2023.02.01

Abstract

In this study, the particle size of Si polycrystals was controlled through wet-sedimentation method, and changes in the capacity and cyclic characteristics of the Si anode material according to the particle size were observed. After wet-sedimentation of Si particles pulverized by a vibration mill, the non-uniform particle distribution of Si was uniformly controlled. The d50 of a sample in which Si was sedimented for 24 hours decreased to 0.50 ㎛. As a result of the electrochemical characteristic analysis, the Rct value representing the resistance in the electrode was significantly reduced due to the decrease in particle size. The unclassified Si sample exhibited a discharge capacity of 2,869 mAh/g in the first cycle, and decreased to 85.7 mAh/g after 100 cycles. The sample in which Si was classified for 24 hours showed a capacity of 3,394 mAh/g initially, and maintained a capacity of 1,726 mAh/g after 100 cycles. As the size of the Si particles decreased, the discharge capacity increased and the cycle life was also increased.

본 연구에서는 습식 분극을 통하여 Si 다결정의 입자 크기를 조절을 하였으며, 입자 크기에 따른 Si 음극활물질의 용량 및 수명 특성 변화를 관찰하였다. 진동밀로 분쇄한 Si 입자를 습식법으로 분급한 시료의 입도를 분석한 결과 Si의 불균일한 입자 분포가 균일하게 조절이 되었다. Si를 24시간 분급한 시료의 d50이 0.50 ㎛로 감소하였다. 전기화학적 특성 분석 결과, 입자 크기의 감소로 인하여 전극 내의 저항을 나타내는 Rct 값이 현저하게 줄어들었다.분급하지 않은 Si 시료는 첫 사이클에서 2,869 mAh/g의 방전용량을 나타내었고, 100 사이클 후에는 85.7 mAh/g으로 방전용량이 감소하였다. Si를 24시간 분급한 시료의 경우에 초기에는 3,394 mAh/g의 용량을 보였으며, 100사이클 후에는 1,726 mAh/g의 용량을 유지하였다. 결과적으로 Si 입자의 크기가 감소할수록 방전용량이 증가하였으며, 사이클 수명도 증가하였다.

Keywords

Acknowledgement

이 논문은 교육부와 한국연구재단의 재원으로 지원을 받아 수행된 사회맞춤형 산학협력 선도대학(LINC+) 육성사업의 연구결과입니다.

References

  1. Ma, D., Cao, Z. and Hu, A., "Si-based Anode Materials for Liion Batteries : A Mini Review," Nano-Micro Lett., 6, 347-358 (2014). https://doi.org/10.1007/s40820-014-0008-2
  2. Li, P., Kim, H., Myung, S. T. and Sun, Y. K., "Diverting Exploration of Silicon Anode into Practical Way: A Review Focoused on Silicon-Graphite Composite for Lithium Ion Batteries," Energy Storage Mater., 35, 550-576(2021). https://doi.org/10.1016/j.ensm.2020.11.028
  3. Choi, S., Bok, T., Ryu, J., Lee, J. I., Cho, J. and Park, S., "Revisit of Metallothermic Redcution for Macroporous Si: Compromise between Capacity and Volume Expansion for Practical Li-ion Battery," Nano Energy, 12, 161-168(2015). https://doi.org/10.1016/j.nanoen.2014.12.010
  4. Park, M. H., Kim, M. G., Joo, J., Kim, K., Kim, J., Ahn, S., Cui, Y. and Cho, J., "Silicon Nanotube Battery Anodes," Nano Lett., 9, 3844-3847(2009). https://doi.org/10.1021/nl902058c
  5. Kim, W. S., Hwa, Y., Shin, J. H., Yang, M., Sohn, H. J. and Hong, S. H., "Scalable Synthesis of Silicon Nanosheets from Sand as an Anode for Li-ion Batteries," Nanoscale, 6, 4297-4302(2014). https://doi.org/10.1039/c3nr05354g
  6. Ma, Y., Tang, H., Zhang, Y., Li, Z., Zhang, X. and Tang, Z., "Facile Synthesis of Si-C Nanocomposites with Yolk-shell Structure as an Anode for Lithium-Ion Batteries," J. Alloys Compd., 704, 599-606(2017). https://doi.org/10.1016/j.jallcom.2017.02.083
  7. Guo, S., Hu, X., Hou, Y. and Wen, Z., "Tunale Synthesis of Yolk-Shell Porous Silicon@Carbon for Optimizing Si/C-Based Anode of Lithium-Ion Batteries," ACS Appl. Mater. Interfaces, 9, 42084-42092(2017). https://doi.org/10.1021/acsami.7b13035
  8. Cen, Y., Qin, Q., Sisson, R. D. and Liang, J., "Effect of Particle Size and Surface Treatment on Si/Graphene Nanocomposite Lithium-Ion Battery Anodes," Electrochim. Acta, 251, 690-698 (2017). https://doi.org/10.1016/j.electacta.2017.08.139
  9. Teki, R., Datta, M. Krishnan, K., Parker, R., T. C., Lu, T. M., Kumta, P. N. and Koratkar, N., "Nanostructured Silicon Anodes for Lithium Ion Rechargeable Batteries," Small, 5(20), 2236-2242(2009). https://doi.org/10.1002/smll.200900382
  10. Chelgani, S. C., Parian, M., Parapari, P. S., Ghorbani, Y. and Rosenkranz, J., "A Comparative Study on the Effects of Dry and Wet Grinding on Mineral Flotation Separation-a Review," J. Mat. Res. Tech., 8(5), 5004-5011(2019). https://doi.org/10.1016/j.jmrt.2019.07.053
  11. Hui, X., Zhao, R., Zhang, P., Li, C., Wang, C. and Yin, L., "LowTemperature Reduction Strategy Synthesized Si/Ti3C2 MXene Composite Anodes for High-Performance Li-Ion Batteries," Adv. Energy Mater., 9, 1901065(2019).
  12. Maroni, F., Gabrielli, S., Palmieri, A., Marcantoni, E., Croce, F. and Nobili, F., "High Cycling Stability of Anodes for Lithiumion Batteries Based on Fe3O4 Nanoparticles and Poly(acrylic acid) Binder," J. Power Sources, 332, 79-87(2016). https://doi.org/10.1016/j.jpowsour.2016.09.106
  13. Xu, Y., Yuan, T., Bian, Z., Yang, J. and Zheng, S., "Tuning Particle and Phase Formation of Sn/Carbon Nanofibers Composites towards Stable Lithium-Ion Storage," J. Power Sources, 453, 227467(2020).
  14. Jin, Y., Zhu, B., Lu, Z., Liu, N. and Zhu, J., "Challenges and Recent Progress in the Development of Si Anodes for LithiumIon Battery," Adv. Energy Mater., 7, 1700715(2017).
  15. Cao, W., Han, K., Chen, M., Ye, H. and Sang, S., "Particle Size Optimization Enabled High Initial Coulombic Efficiency and Cycling Stability of Micro-Sized Porous Si Anode via Alsi Alloy Powder Etching," Electrochim. Acta, 320, 134613(2019).
  16. Tian, H., Tan, X., Xin, F., Wang, C. and Han, W., "Micron-sized Nano-porous Si/C Anodes for Lithium Ion Batteries," Nano Energy, 11, 490-499(2015). https://doi.org/10.1016/j.nanoen.2014.11.031
  17. Wu, J., Qin, X., Zhang, H., He, Y. B., Li, B., Ke, L., Lv, W., Du, H., Yang, Q. H. and Kang, F., "Multilayered Silicon Embedded Porous Carbon/Graphene Hybrid Film as a High Performance Anode," Carbon, 84, 434-443(2015). https://doi.org/10.1016/j.carbon.2014.12.036
  18. Liu, J., Kopold, P., van Aken, P. A., Maier, J. and Yu, Y., "Energy Storage Materials from Nature through Nanotechnology: A Sustainable Route from Reed Plants to a Silicon Anode for Lithiumion Batteries," Angew. Chem., 127, 9768-9772(2015). https://doi.org/10.1002/ange.201503150
  19. Ikonen, T., Nissinen, T., Pohjalainen, E., Sorsa, O., Kallio, T. and Lehto, V.-P., "Electrochemically Anodized Porous Silicon: Towards Simple and Affordable Anode Material for Li-Ion Batteries," Sci. Rep., 7, 7880(2017).
  20. Pan, Q., Zuo, P., Lou, S., Mu, T., Du, C., Cheng, X., Ma, Y., Gao, Y. and Yin, G., "Micro-sized Spherical Silicon@Carbon@ Graphene Prepared by Spray Drying as Anode Material for Lithium-Ion Batteries," J. Alloys Compd., 723, 434-440(2017). https://doi.org/10.1016/j.jallcom.2017.06.217
  21. Xu, S. D., Zhuang, Q. C., Wang, J., Xu, Y. Q. and Zhu, Y. B., "New Insight into Vinylethylene Carbonate as a Film Forming Addtivie to Ethylene Carbonate-Based Electrolytes for LithiumIon Batteries," Int. J. Electrochem. Sci., 8, 8058-8076(2013). https://doi.org/10.1016/S1452-3981(23)12869-0
  22. Cen, Y. J., Qin, Q. W., Sisson, R. D. and Liang, J., "Effect of Particle Size and Surface Treatment on Si/Graphene Nanocomposite Lithium-Ion Battery Anodes," Electrochim. Acta, 251, 690-698 (2017). https://doi.org/10.1016/j.electacta.2017.08.139
  23. Xing, Z., Ju, Xu, H. and Qian, Y., "One-step Hydrothermal Synthesis of ZnFe2O4 Nano-Octahedrons as a High Capacity Anode Material for Li-Ion Batteries," Nano Res., 5(7), 477-485(2012). https://doi.org/10.1007/s12274-012-0233-2
  24. Liu, X. H., Zhong, L., Huang, S., Mao, S. X., Zhu, T. and Huang, J. Y., "Size-Dependent Fracture of Silicon Nanoparticles during Lithiation," ACS Nano, 6(2), 1522-1531(2012). https://doi.org/10.1021/nn204476h
  25. Xu, Q., Li, J. Y., Yin, Y. X., Kong, Y. M., Guo, Y. G. and Wan, L. J., "Nano/Micro-Structured Si/C Anodes with High Initial Coulombic Efficiency in Li-Ion Batteries," Chem. Asian J., 11, 1205-1209(2016). https://doi.org/10.1002/asia.201600067
  26. Liu, B., Lu, H., Chu, G., Luo, F., Zheng, J., Chen, S. and Li, H., "Size Effect of Si Particles on the Electrochemical Performances of Si/C Composite Anodes," Chin. Phys. B, 27, 088201(2018).
  27. Ryu, I., Choi, J. W., Cui, Y. and Nix, W. D., "Size-dependent Fracture of Si Nanowire Battety Anodes," J. Mech. Phys. Solids, 59, 1717-1730(2011). https://doi.org/10.1016/j.jmps.2011.06.003
  28. Cho, Y. H., Booh, S. W., Cho, E., Lee, H. and Shin, J., "Theoretical Prediction of Fracture Conditions for Delithiation in Silicon Anode of Lithium Ion Battery," APL Mater., 5, 106101(2017).