Browse > Article
http://dx.doi.org/10.12989/anr.2021.10.5.461

Synthesis and radiolabeling of PEGylated dendrimer-G2-Gemifloxacin with 99mTc to Biodistribution study in rabbit  

Mohtavinejad, Naser (Department of Radiopharmacy, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences)
Dolatshahi, Shaya (Pharm, D. Faculty of Pharmacy, Tehran University of Medical Sciences)
Amanlou, Massoud (Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences)
Ardestani, Mehdi Shafiee (Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences)
Asadi, Mehdi (Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences)
Pormohammad, Ali (Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences)
Publication Information
Advances in nano research / v.10, no.5, 2021 , pp. 461-470 More about this Journal
Abstract
Infection is one of the major mortality causes throughout the globe. Nuclear medicine plays an important role in diagnosis of deep infections such as osteomyelitis, arthritis infection, heart valve and heart prosthesis infections. Techniques such as labeled leukocytes are sensitive and selective for tracking the inflammations but they are not suitable for differentiating infection from inflammation. Anionic linear-globular dendrimer-G2 was synthesized then conjugation to gemifloxacin antibiotic. The structures were identified by FT-IR, 1H-NMR, C-NMR, LC-MS and DLS. The toxicity of gemifloxacin and dendrimer-gemifloxacin complex was compared by MTT test. Dendrimer-G2-gemifloxacin was labeled by Technetium-99m and its in-vitro stability and radiochemical purity were investigated. In-vivo biodistribution and SPECT imaging were studied in a rabbit model. Identify and verify the structure of the each object was confirmed by FT-IR, 1H-NMR, C-NMR and LC-MS, also, the size and charge of this compound were 128 nm and -3/68 mv respectively. MTT test showed less toxicity of the dendrimer-G2-gemifloxacin than free gemifluxacin (P < 0.001). Radiochemical yield was > %98. Human serum stability was 84% up to 24 h. Biodistribution study at 50 min, 24 and 48 h showed that the complex is significantly absorbed by the intestine and accumulation in the lungs and affects them, finally excreted through the kidneys, biodistribution results are consistent with results from full image means of SPECT/CT technique.
Keywords
Technetium-99m; gemifloxacin; labeling; biodistribution; dendrimer-$G_2$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shahzad, S., Qadir, M.A., Rasheed, R. and Ahmed, M. (2019), "Synthesis of 99mTc-gemifloxacin freeze dried kits and their biodistribution in Salmonella typhi, Pseudomonas aeruginosa and Klebsiella pneumoniae", Arab, J. Chem., 12(5), 664-670. https://doi.org/10.1016/j.arabjc.2015.10.002.   DOI
2 Sharma, R., Kim, S.Y., Sharma, A., Zhang, Z., Kambhampati, S.P., Kannan, S. and Kannan, R.M. (2017), "Activated microglia targeting dendrimer-minocycline conjugate as therapeutics for neuroinflammation", Bioconjugate Chem., 28(11), 2874-2886. https://doi.org/10.1021/acs.bioconjchem.7b00569.   DOI
3 Signore, A. and Glaudemans, A.W. (2011), "The molecular imaging approach to image infections and inflammation by nuclear medicine techniques", Annal. Nucl. Med., 25(10), 681-700. https://doi.org/10.1007/s12149-011-0521-z.   DOI
4 Solanki, K.K., Bomanji, J., Siraj, Q., Small, M. and Britton, K.E. (1993), "99mTc Infecton-A new class of radiopharmaceutical for imaging infection", J. Nucl. Med., 34, 119A.
5 Torres, L., Alves, V., Oliveira, A. and Pereira, J. (2018), "Fab'fragments of 99mTc-labeled anti-granulocyte monoclonal antibodies in vascular graft infection", Annal. Nucl. Med., 15(10), 621-627.
6 Sonvico, F., Clementino, A., Buttini, F., Colombo, G., Pescina, S., Staniscuaski Guterres, S., Raffin Pohlmann, A. and Nicoli, S. (2018), "Surface-modified nanocarriers for nose-to-brain delivery: from bioadhesion to targeting", Pharmaceutics, 10(1), 34. https://doi.org/10.3390/pharmaceutics10010034.   DOI
7 Farkas, R., Siwowska, K., Ametamey, S.M., Schibli, R., van der Meulen, N.P. and Muller, C. (2016), "64Cu-and 68Ga-based PET imaging of folate receptor-positive tumors: Development and evaluation of an albumin-binding NODAGA-folate", Mole. Pharmaceutics, 13(6), 1979-1987. https://doi.org/10.1021/acs.molpharmaceut.6b00143.   DOI
8 Hall, A.V., Solanki, K.K., Vinjamuri, S., Britton, K.E. and Das, S.S. (1998), "Evaluation of the efficacy of 99mTc-Infecton, a novel agent for detecting sites of infection", J. Clin. Pathol., 51(3), 215-219. http://doi.org/10.1136/jcp.51.3.215.   DOI
9 Sadeek, S.A. and El-Hamid, S.M.A. (2016), "Synthesis, spectroscopic, thermal analysis and in vitro biological properties of some new metal complexes with gemifloxacin and 1, 10-phenanthroline", J. Therm. Anal. Calorim., 124(1), 547-562. https://doi.org/10.1007/s10973-015-5057-3.   DOI
10 Grant, J., Naeim, M., Lee, Y., Miya, D., Kee, T. and Ho, D. (2019), "Engineering multifunctional nanomedicine platforms for drug delivery and imaging", In: Nanotheranostics for Cancer Applications, pp. 319-344, Springer, Cham. https://doi.org/10.1007/978-3-030-01775-0_14.
11 Jain, S., Krishna Cherukupalli, S. and Mahmood, A. (2019), "Emerging nanoparticulate systems: Preparation techniques and stimuli responsive release characteristics", J. Appl. Pharm. Sci, 9(8), 130-143. https://doi.org/10.7324/JAPS.2019.90817.   DOI
12 Li, C., Cao, X., Ma, Z., Sun, X., Hu, F. and Wang, L. (2018), "Effect of pre-surgery assessments on the prognosis of patients received extracranial-intracranial bypass surgery", Restor. Neurol. Neuros., 36(5), 593-604. https://doi.org/10.3233/RNN180848.   DOI
13 Khosroshahi, A.G., Amanlou, M., Sabzevari, O., Daha, F.J., Aghasadeghi, M.R., Ghorbani, M., Ardestani, M.S., Alavidjeh, M.S., Sadat, S.M., Pouriayevali, M.H. and Mousavi, L. (2013), "A comparative study of two novel nanosized radiolabeled analogues of methionine for SPECT tumor imaging", Curr. Med. Chem., 20(1), 123-133.   DOI
14 Madavan, R. and Balaraman, S. (2017), "Investigation on effects of different types of nanoparticles on critical parameters of nano-liquid insulation systems", J. Mol. Liq., 230, 437-444. https://doi.org/10.1109/ICDL.2019.8796708.   DOI
15 Roohi, S., Mushtaq, A., Jehangir, M. and Malik, S.A. (2006), "Synthesis, quality control and biodistribution of 99mTcKanamycin", J. Radioanal. Nucl. Ch., 267(3), 561-566. https://doi.org/10.1007/s10967-006-0087-8.   DOI
16 Govaert, G.A.M. and Glaudemans, A.W. (2016), "Nuclear medicine imaging of posttraumatic osteomyelitis", Eur. J. Trauma. Emergency Surg., 42(4), 397-410. https://doi.org/10.1007/s00068-016-0647-8.   DOI
17 Okarvi, S.M. (2004), "Erratum: Peptide-based radiopharmaceuticals: Future tools for diagnostic imaging of cancers and other diseases", Med. Res. Rev., 24(5), 685-686. https://doi.org/10.1002/med.20015.   DOI
18 Alavi, A. and Zhuang, H. (2001), "Finding infection-help from PET", The Lancet, 358(9291), 1386. https://doi.org/10.1016/S0140-6736(01)06491-1.   DOI
19 Kung, M.P., Stevenson, D.A., Plossl, K., Meegalla, S.K., Beckwith, A., Essman, W.D., Mu, M., Lucki, I. and Kung, H.F. (1997), "[99mTc] TRODAT-1: A novel technetium-99m complex as a dopamine transporter imaging agent", Eur. J. Nucl. Med., 24(4), 372-380. https://doi.org/10.1007/BF00881808.   DOI
20 Lambrecht, F.Y. (2011), "Evaluation of 99mTc-labeled antibiotics for infection detection", Annal. Nucl. Med., 25(1), 1-6. https://doi.org/10.1007/s12149-010-0417-3.   DOI
21 Lupetti, A., Welling, M.M., Pauwels, E.K. and Nibbering, P.H. (2003), "Radiolabelled antimicrobial peptides for infection detection", Lancet Infect. Dis., 3(4), 223-229. https://doi.org/10.1053/j.semnuclmed.2017.11.003.   DOI
22 Karthikeyan, R., Karempudi, B., Rasheed, S. and Vijayaraj, P. (2012), "Dendritic architechture for the delivery of antibacterial agent against resistant producing strains", Cent. Euro. J. Exp. Bio., 1, 45-48.
23 Blondeau, J.M. and Tillotson, G. (2007), "Gemifloxacin for the management of community-acquired respiratory tract infections", Antibiotiques, 9(3), 173-180. https://doi.org/10.1016/S1294-5501(07)91376-X.   DOI
24 Alnasser, Y., Kambhampati, S.P., Nance, E., Rajbhandari, L., Shrestha, S., Venkatesan, A., Kannan, R.M. and Kannan, S. (2018), "Preferential and increased uptake of hydroxyl terminated PAMAM dendrimers by activated microglia in rabbit brain mixed glial culture", Molecules, 23(5), 1025. https://doi.org/10.3390/molecules23051025.   DOI
25 Arima, H., Motoyama, K. and Higashi, T. (2017), "Potential use of cyclodextrins as drug carriers and active pharmaceutical ingredients", Chem, Pharm. Bull., 65(4), 341-348. https://doi.org/10.1248/cpb.c16-00779.   DOI
26 Benitez, A., Roca, M. and Martin-Comin, J. (2006), "Labeling of antibiotics for infection diagnosis", Q J Nucl. Med. Mol. Im., 50(2), 147-52.
27 Makinen, T.J., Lankinen, P., Poyhonen, T., Jalava, J., Aro, H.T. and Roivainen, A. (2005), "Comparison of 18 F-FDG and 68 Ga PET imaging in the assessment of experimental osteomyelitis due to Staphylococcus aureus", Eur. J. Nucl. Med. Mol. I., 32(11), 1259-1268. https://doi.org/10.1007/s00259-005-1841-9.   DOI
28 Carvalho, B.F., Albernaz, M.S. (2013), "Development of nanoradiopharmaceuticals by labeling polymer nanoparticles with tc-99m", World J. Nucl. Med.,12(1), 24-26. https://doi.org/10.4103%2F1450-1147.113946.   DOI
29 Das, S.S., Hall, A.V., Wareham, D.W. and Britton, K.E. (2002), "Infection imaging with radiopharmaceuticals in the 21st century", Braz. Arch. Biol. Techn., 45(SPE), 25-37. http://doi.org/10.1590/S1516-89132002000500005.   DOI
30 De Oliveira Freitas, L.B., de Melo Corgosinho, L., Faria, J.A.Q.A., dos Santos, V.M., Resende, J.M., Leal, A.S., Gomes, D.A. and de Sousa, E.M.B. (2017), "Multifunctional mesoporous silica nanoparticles for cancer-targeted, controlled drug delivery and imaging", Micropor. Mesopor. Mat., 242, 271-283. https://doi.org/10.1016/j.micromeso.2017.01.036.   DOI
31 Magneson, G.R. and Orahood, R.C. (2016), "Compositions for radiolabeling diethylenetriaminepentaacetic acid (DTPA)-dextran", U.S. Patent, 9, 439, 985.
32 Gothwal, A., Malik, S., Gupta, U. and Jain, N.K. (2020), "Toxicity and biocompatibility aspects of dendrimers", Pharmaceut. Applicat. Dendrimers, 55(11), 251-274. https://doi.org/10.1016/B978-0-12-814527-2.00011-1.   DOI
33 Yurt Lambrecht, F., Yilmaz, O., Unak, P., Seyitoglu, B., Durkan, K. and Baskan, H. (2008), "Evaluation of 99mTc- Cefuroxime axetil for imaging of inflammation", J. Radioanal. Nucl. Chem., 277(2), 491-494. https://doi.org/10.1007/s10967-007-7111-5.   DOI
34 Mohtavinejad, N., Amanlou, M., Bitarafan-Rajabi, A., Pormohammad, A. and Ardestani, M.S. (2020), "Technetium-99 m-PEGylated dendrimer-G2-(Dabcyle-Lys6, Phe7)-pHBSP: A novel Nano-Radiotracer for molecular and early detecting of cardiac ischemic region", Bioorg. Chem., 45(6), 10373. https://doi.org/10.1016/j.bioorg.2020.103731.   DOI
35 Pakos, E.E., Trikalinos, T.A., Fotopoulos, A.D. and Ioannidis, J.P. (2007), "Prosthesis infection: diagnosis after total joint arthroplasty with antigranulocyte scintigraphy with 99mTclabeled monoclonal antibodie-A meta-analysis", Radiology, 242(1), 101-108. https://doi.org/10.1148/radiol.2421052011.   DOI
36 Raza, M.A., Kanwal, Z., Rauf, A., Sabri, A.N., Riaz, S. and Naseem, S. (2016), "Size-and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes", Nanomaterials, 6(4), 74. https://doi.org/10.3390/nano6040074.   DOI
37 Roohi, S., Mushtaq, A. and Malik, S.A. (2005), "Synthesis and biodistribution of 99mTc-Vancomycin in a model of bacterial infection", Radiochim. Acta., 93(7), 415-418. https://doi.org/10.1524/ract.2005.93.7.415.   DOI
38 Miyashita, H., Nakahara, T., Asoda, S., Kameyama, K., Kawaida, M., Enomoto, R., Shiba, H., Jinzaki, M., Kawana, H. and Nakagawa, T. (2019), "Clinical value of 3D SPECT/CT imaging for assessing jaw bone invasion in oral cancer patients", J. Cranio-Maxill. Surg., 47(7), 1139-1146. https://doi.org/10.1016/j.jcms.2019.03.013.   DOI
39 Desmonts, C., Bouthiba, M.A., Enilorac, B., Nganoa, C., Agostini, D. and Aide, N. (2020), "Evaluation of a new multipurpose whole-body CzT-based camera: Comparison with a dual-head Anger camera and first clinical images", EJNMMI physics, 7(1), 1-16. https://doi.org/10.1186/s40658-020-0284-5.   DOI
40 Ghaffari, M., Dehghan, G., Abedi-Gaballu, F., Kashanian, S., Baradaran, B., Dolatabadi, J.E.N. and Losic, D. (2018), "Surface functionalized dendrimers as controlled-release delivery nanosystems for tumor targeting", Eur. J. Pharm. Sci., 122, 311-330. https://doi.org/10.1016/j.ejps.2018.07.020.   DOI