• Title/Summary/Keyword: Nano $Fe_xC$

Search Result 120, Processing Time 0.028 seconds

Preparation and Photosensitivity of Ag-Multi Walled Carbon Nanotube-TiO2 Nano Composite (Ag-Multi walled carbon nanotube-TiO2 복합나노소재 제조 및 광감응성)

  • Kim, Sung-Pil;Kim, Jong-Oh
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.2
    • /
    • pp.5-11
    • /
    • 2016
  • $MWCNT-TiO_2$ nano composites and $Ag-MWCNT-TiO_2$ nano composites were prepared from Multi-Walled Carbon NanoTube (MWCNT), titanium (IV) butoxide (TNB) solution and silver nitrate ($AgNO_3$) by the sol-gel method. The dispersion and structure of Ag in the synthesized composites was observed by Scanning Electron Microscopy (SEM) and Field Emission Transmission Electron Microscopy (FE-TEM). X-Ray Diffraction (XRD) patterns of the composites showed that the composites contained an anatase phase. The Energy Dispersive X-ray spectroscopy (EDX) showed the presence of C, O, Ti and Ag peaks. The $TiO_2$ particles were distributed uniformly in the MWCNT network, and Ag particles were virtually fixed on the surface of the tubes. Also decomposition of the methylene blue was investigated according to UV radiation times for study photocatalytic activity. $Ag-MWCNT-TiO_2$ nano composites show high photodegradation than $MWCNT-TiO_2$ nano composites. The results indicate that the high conductivity of Ag improved the photoactivity of the $MWCNT-TiO_2$ composite.

Structure and Properties of a Nonheme Pentacoordinate Iron(II) Complex with a Macrocyclic Triazapyridinophane Ligand

  • You, Minyoung;Seo, Mi Sook;Kim, Kwan Mook;Nam, Wonwoo;Kim, Jinheung
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.8
    • /
    • pp.1140-1144
    • /
    • 2006
  • A macrocyclic ligand, N,N',N'-tribenzyl-2,11,20-triaza[3,3,3](2,6)pyridinophane (BAPP), was used to prepare an iron(II) complex as a nonheme model complex, $[(BAPP)Fe]^{+2}$ (1). X-ray crystallography of a colorless crystal of 1 revealed that BAPP acted as a pentadentate ligand due to geometrical strain for the formation of a six-coordinate iron(II) complex by BAPP. As a result, the iron center revealed a significantly distorted square pyramidal geometry similar to that found in the active site of taurine dioxygenase (tauD). In the reaction of 1 with PhIO, no intermediate was observed in the UV-visible region of spectrometer at low temperatures. Catalytic oxidations of triphenyl phosphine with PhIO at ${-40^{\circ}C}$ revealed that 1 was able to convert triphenyl phosphine to triphenyl phosphine oxide.23; SSOCHKThioanisole was also oxidized to the corresponding methylphenyl sulfoxide under the same conditions.

Preparation and Electrical Properties of BiFeO3 Films by RF Magnetron Sputtering (RF Magnetron Sputtering에 의한 BiFeO3 박막의 제조 및 전기적 특성)

  • Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.19 no.5
    • /
    • pp.253-258
    • /
    • 2009
  • Mn-substituted $BiFeO_3$(BFO) thin films were prepared by r.f. magnetron sputtering under an Ar/$O_2$ mixture of various deposition pressures at room temperature. The effects of the deposition pressure and annealing temperature on the crystallization and electrical properties of BFO films were investigated. X-ray diffraction patterns revealed that BFO films were crystallized for films annealed above $500^{\circ}C$. BFO films annealed at $550^{\circ}C$ for 5 min in $N_2$ atmosphere exhibited the crystallized perovskite phase. The (Fe+Mn)/Bi ratio decreased with an increase in the deposition pressure due to the difference of sputtering yield. The grain size and surface roughness of films increased with an increase in the deposition pressure. The dielectric constant of BFO films prepared at various conditions shows $127{\sim}187$ at 1 kHz. The leakage current density of BFO films annealed at $500^{\circ}C$ was approximately two orders of magnitude lower than that of $550^{\circ}C$. The leakage current density of the BFO films deposited at $10{\sim}30\;m$ Torr was about $5{\times}10^{-6}{\sim}3{\times}10^{-2}A/cm^2$ at 100 kV/cm. Due to the high leakage current, saturated P-E curves were not obtained in BFO films. BFO film annealed at $500^{\circ}C$ exhibited remnant polarization(2Pr) of $26.4{\mu}C/cm^2$ at 470 kV/cm.

A Characteristic study of SiC Nanowires by RF-Sputtering (RF-Sputtering 법에 의한 SiC 나노와이어의 특성연구)

  • Jeong, Chang-Gu;Kim, Tae-Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.6
    • /
    • pp.344-349
    • /
    • 2010
  • Silicon carbide nanowires were grown by heat treatment of the films at $1200^{\circ}C$ after amorphous SiC thin films were deposited on graphite substrate by radio frequency magnetron sputtering at $600^{\circ}C$. It was confirmed that SiC nanowires with the diameter of 20-60 nm and length of about 50nm were grown from Field Emission Scanning Election Microscope (FE-SEM) and Transmission Election Microscope (TEM) observation. The diameter of nanowires was increased as heat treatment time is increased. The nanowires were identified to ${\beta}$-SiC single crystalline from X-Ray Diffraction(XRD) analysis. It was observed from this study that deposition temperature of samples was critical to the crystallization of nanowires. On the other hand, the effect of deposition time was insignificant.

Potential degradation of methylene blue (MB) by nano-metallic particles: A kinetic study and possible mechanism of MB degradation

  • Singh, Jiwan;Chang, Yoon-Young;Koduru, Janardhan Reddy;Yang, Jae-Kyu
    • Environmental Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • The degradation of methylene blue (MB) in an aqueous solution by nano-metallic particles (NMPs) was studied to evaluate the possibility of applying NMPs to remove MB from the wastewater. Scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to characterize the synthesized NMPs before and after the reaction. The effects of the NMP dosage, the initial pH, the initial concentration of MB and the amount of $H_2O_2$ on the MB degradation outcomes were studied. The highest removal rate of MB was achieved to be 100% with an initial MB concentration of 5 mg/L, followed by 99.6% with an initial concentration of 10 mg/L under the following treatment conditions: dose of NMP of 0.15 g/L, concentration of $H_2O_2-100mM$ and a temperature of $25^{\circ}C$. The SEM analysis revealed that the nano particles were not spherical in shape. FTIR spectra shows occurrence of metal oxides on the surfaces of the NMPs. The XPS analyses results represent that Fe, Zn, N, Ca, C and O were occurred on the surfaces of the NMPs. The degradation of MB was suitable for the pseudo-first-order kinetics.

Annealing Effects on Properties of ZnO Nanorods Grown by Hydrothermal Method (수열합성법으로 성장된 산화아연 나노막대의 특성 및 열처리 효과)

  • Jeon, Su-Min;Kim, Min-Su;Kim, Ghun-Sik;Cho, Min-Young;Choi, Hyun-Young;Yim, Kwang-Gug;Kim, Hyeoung-Geun;Lee, Dong-Yul;Kim, Jin-Soo;Kim, Jong-Su;Lee, Joo-In;Leem, Jae-Young
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.293-299
    • /
    • 2010
  • Vertically aligned ZnO nanorods on Si (111) substrate were prepared by hydrothermal method. The ZnO nanorods on spin-coated seed layer were synthesized at $140^{\circ}C$ for 6 hours in autoclave and were thermally annealed in argon atmosphere for 20 minutes at temperature of 300, 500, $700^{\circ}C$. The effects of the thermal annealing on the structural and optical properties of the grown on ZnO nanorods were investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), photoluminescence (PL). All the ZnO nanorods show a strong ZnO (002) and weak (004) diffraction peak, indicating c-axis preferred orientation. The residual stress of the ZnO nanorods is changed from compressive to tensile by increasing annealing temperature. The hexagonal shaped ZnO nanorods are observed. The PL spectra of the ZnO nanorods show a sharp near-band-edge emission (NBE) at 3.2 eV, which is generated by the free-exciton recombination and a broad deep-level emission (DLE) at about 2.12~1.96 eV, which is caused by the defects in the ZnO nanorods. The intensity of the NBE peak is decreased and the DLE peak is red-shifted due to oxygen-related defects by thermal annealing.

Characteristics of Silicon Carbide Nanowires Synthesized on Porous Body by Carbothermal Reduction

  • Kim, Jung-Hun;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.3
    • /
    • pp.285-289
    • /
    • 2018
  • We synthesized silicon carbide (${\beta}-SiC$) nanowires with nano-scale diameter (30 - 400 nm) and micro-scale length ($50-200{\mu}m$) on a porous body using low-grade silica and carbon black powder by carbothermal reduction at $1300-1600^{\circ}C$. The SiC nanowires were formed by vapor-liquid-solid deposition with self-evaporated Fe catalysts in low-grade silica. We investigated the characteristics of the SiC nanowires, which were grown on a porous body with Ar flowing in a vacuum furnace. Their structural, optical, and electrical properties were analyzed with X-ray diffraction (XRD), transmission electron microscopy (TEM), and selective area electron diffraction (SAED). We obtained high-quality SiC single crystalline nanowire without stacking faults that may have uses in industrial applications.

Pyro-synthesis of Na2FeP2O7 Nano-plates as Cathode for Sodium-ion Batteries with Long Cycle Stability

  • Song, Jinju;Yang, Juhyun;Alfaruqi, Muhammad Hilmy;Park, Wangeun;Park, Sohyun;Kim, Sungjin;Jo, Jeonggeun;Kim, Jaekook
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.406-410
    • /
    • 2016
  • Carbon-coated sodium iron pyrophosphate ($Na_2FeP_2O_7$) was prepared by a simple and low-cost pyro-synthesis route for further use as the cathode for Na-ion batteries. The X-ray diffraction (XRD) pattern of the sample annealed at $650^{\circ}C$ confirmed the pure triclinic phase of $Na_2FeP_2O_7$. Electron microscopy studies revealed a cross linked plate shape morphology of the $Na_2FeP_2O_7$ sample. When tested for application in Na-ion battery, the $Na_2FeP_2O_7$ cathode showed two redox pairs in the potential window of 2.0-4.0 V. The cathode registered initial discharge and charge capacities of 80.85 and 90 mAh/g, respectively, with good cycling performance.

Property and Microstructure Evolution of Nickel Silicides on Nano-thick Polycrystalline Silicon Substrates (나노급 다결정 실리콘 기판 위에 형성된 니켈실리사이드의 물성과 미세구조)

  • Kim, Jong-Ryul;Choi, Young-Youn;Song, Oh-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.16-22
    • /
    • 2008
  • We fabricated thermally-evaporated 10 nm-Ni/30 nm and 70 nm Poly-Si/200 nm-$SiO_2/Si$ structures to investigate the thermal stability of nickel silicides formed by rapid thermal annealing(RTA) of the temperature of $300{\sim}1100^{\circ}C$ for 40 seconds. We employed for a four-point tester, field emission scanning electron microscope(FE-SEM), transmission electron microscope(TEM), high resolution X-ray diffraction(HRIXRD), and scanning probe microscope(SPM) in order to examine the sheet resistance, in-plane microstructure, cross-sectional microstructure evolution, phase transformation, and surface roughness, respectively. The silicide on 30 nm polysilicon substrate was stable at temperature up to $900^{\circ}C$, while the one on 70 nm substrate showed the conventional $NiSi_2$ transformation temperature of $700^{\circ}C$. The HRXRD result also supported the existence of NiSi-phase up to $900^{\circ}C$ for the Ni silicide on the 30 nm polysilicon substrate. FE-SEM and TEM confirmed that 40 nm thick uniform silicide layer and island-like agglomerated silicide phase of $1{\mu}m$ pitch without residual polysilicon were formed on 30 nm polysilicon substrate at $700^{\circ}C\;and\;1000^{\circ}C$, respectively. All silicides were nonuniform and formed on top of the residual polysilicon for 70 nm polysilicon substrates. Through SPM analysis, we confirmed the surface roughness was below 17 nm, which implied the advantage on FUSI gate of CMOS process. Our results imply that we may tune the thermal stability of nickel monosilicide by reducing the height of polysilicon gate.

Hydroxyapatite Precipitation Phenomena on Micro-pore Formed Ti-Nb Alloy by PEO technique

  • Kim, Jeong-Jae;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.137-137
    • /
    • 2015
  • The purposed of this work was to observe hydroxyapatite precipitation phenomena on micro-pore formed Ti-Nb alloy by PEO technique. The Ti-30Nb and Ti-30Ta alloys were remelted at least ten times in order to avoid inhomogeneity, and then cylindrical specimens (diameter 10 mm, thickness 4 mm) were cut by using laser from cast ingots of the Ti alloys. Heat treatment was carried out at $1050^{\circ}C$ for 2 h for homogenization in argon atmosphere. The morphologic change of the alloys were examined by X-ray diffractometer (XRD) and field emission scanning electron microscopy (FE-SEM).

  • PDF