• 제목/요약/키워드: Nano $Fe_xC$

검색결과 120건 처리시간 0.024초

칩인덕터용 NiCuZn-ferrites 나노 분말합성 및 하소 온도에 따른 특성 변화 (Synthesis of Nano-sized NiCuZn-ferrites for Chip Inductor and Properties with Calcination Temperature)

  • 허은광;김정식
    • 한국세라믹학회지
    • /
    • 제40권1호
    • /
    • pp.31-36
    • /
    • 2003
  • 본 연구에서는 칩 인덕터용 코어 소재로 사용되는 NiCuZn-ferrite를 공침법을 이용하여 나노크기의 초미세 분말로 합성하고, 합성된 NiCuZn-ferrite의 하소 온도에 따른 저온소결 특성 및 전자기적 특성에 관하여 고찰하였다. 조성은 (N $i_{0.4-X}$C $u_{x}$Z $n_{0.6}$)$_{1+w}$(F $e_2$ $O_4$)$_{1-w}$에서 x 값을 0.2, w 값은 0.03으로 고정하였고, 하소는 30$0^{\circ}C$에서 7$50^{\circ}C$의 온도범위에서 진행하였다. 하소 후 90$0^{\circ}C$에서 소결한 시편의 특성을 측정한 결과, 공침법으로 합성한 NiCuZn-ferrite는 90$0^{\circ}C$의 저온에서 소결밀도 4.90g/㎤, 초기투자율 164, Q-factor 72임을 확인하였다. 또한, NiCuZn-ferrite의 미세구조는 하소온도가 증가함에 따라 입자가 커지고 불균일한 상태가 되며, 초기투자율 등의 ferrites의 전자기적 특성이 저하되었다.되었다.

Spatial Distributions of Alloying Elements Obtained from Atom Probe Tomography of the Amorphous Ribbon Fe75C11Si2B8Cr4

  • Shin, Jinkyung;Yi, Seonghoon;Pradeep, Konda Gokuldoss;Choi, Pyuck-Pa;Raabe, Dierk
    • 한국재료학회지
    • /
    • 제23권3호
    • /
    • pp.190-193
    • /
    • 2013
  • Spatial distributions of alloying elements of an Fe-based amorphous ribbon with a nominal composition of $Fe_{75}C_{11}Si_2B_8Cr_4$ were analyzed through the atom probe tomography method. The amorphous ribbon was prepared through the melt spinning method. The macroscopic amorphous natures were confirmed using an X-ray diffractometer (XRD) and a differential scanning calorimeter (DSC). Atom Probe (Cameca LEAP 3000X HR) analyses were carried out in pulsed voltage mode at a specimen base temperature of about 60 K, a pulse to base voltage ratio of 15 %, and a pulse frequency of 200 kHz. The target detection rate was set to 5 ions per 1000 pulses. Based on a statistical analyses of the data obtained from the volume of $59{\times}59{\times}33nm^3$, homogeneous distributions of alloying elements in nano-scales were concluded. Even with high carbon and strong carbide forming element contents, nano-scale segregation zones of alloying elements were not detected within the Fe-based amorphous ribbon. However, the existence of small sub-nanometer scale clusters due to short range ordering cannot be completely excluded.

Ti-30Ta-xZr 합금의 표면에 TiN/Ti 다층막코팅효과 (Effects of TiN/Ti Multilayer Coating on the Ti-30Ta-xZr Alloy Surface)

  • 김영운;정용훈;조주영;최한철;방몽숙
    • 한국표면공학회지
    • /
    • 제42권4호
    • /
    • pp.161-168
    • /
    • 2009
  • Effects of TiN/Ti multilayer coating on the Ti-30Ta-xZr alloy surface were studied by using various experiments. The Ti-30Ta containing Zr (5, 10 and 15 wt%) were melted 10 times to improve chemical homogeneity by using a vacuum furnace. And then samples were homogenized for 24 hrs at $1000^{\circ}C$. The specimens were prepared for TiN/Ti coating by cutting and polishing. The prepared specimens were coated with TiN/Ti multilayers by using DC magnetron sputtering method. The analyses of coated surface and coated layer were carried out by field emission scanning electron microscope(FE-SEM), EDX, and X-ray diffractometer(XRD). From the microstructure and XRD analysis of Ti-30Ta-xZr alloys, The equiaxed structure was changed to needle-like structure with increasing Zr content. And $\alpha$-peak and elastic modulus increased as Zr content increased. The $\alpha$ and $\beta$ phase predominantly were found in the specimen containing high Zr content. According to the analysis of TiN/Ti coating layer, the surface defects and structures of Ti-30Ta-xZr were covered with TiN/Ti coating layer and surface roughness decreased.

RF 열플라즈마를 이용한 TEOS로 부터의 SiC 나노분말 합성 (Synthesis of SiC Nano-powder from TEOS by RF Induction Thermal Plasma)

  • 고상민;구상만;김진호;김지호;변명섭;황광택
    • 한국세라믹학회지
    • /
    • 제48권1호
    • /
    • pp.1-5
    • /
    • 2011
  • Silicon carbide (SiC) has recently drawn an enormous industrial interest because of its useful mechanical properties such as thermal resistance, abrasion resistance and thermal conductivity at high temperature. RF Thermal plasma (PL-35 Induction Plasma, Tekna CO., Canada) has been utilized for synthesis of high purity SiC powder from cheap inorganic solution (Tetraethyl Orthosilicate, TEOS). It is found that the powders by thermal plasma consist of SiC with free carbon and amorphous silica ($SiO_2$) and, by thermal treatment and HF treatment, the impurities are driven off resulting high purity SiC nano-powder. The synthesized SiC powder lies below 30 nm and its properties such microstructure, phase composition, specific surface area and free carbon content have been characterized by X-ay diffraction (XRD), field emission scanning electron microscopy (FE-SEM), thermogravimetric (TG) and Brunauer-Emmett-Teller (BET).

강유전 고분자 박막의 상전이 특성 (Phase Transition Properties of Ferroelectric Polymer Films)

  • 박철우;정치섭
    • 한국전기전자재료학회논문지
    • /
    • 제27권2호
    • /
    • pp.97-103
    • /
    • 2014
  • Phase transition properties of the copolymer films of polyvinylidene fluoride (PVDF) and trifluoroethylene(TrFE), P(VDF-TrFE), were studied with X-ray diffraction (XRD) and polarization modulated ellipsometry (PME). XRD studies on both Langmuir-Blodgett (LB) films and spin coated films exhibit conversions from ferroelectric phase to paraelectric phase at $108{\pm}2^{\circ}C$ on heating and paraelectric phase to ferroelectric phase at $78{\pm}2^{\circ}C$ on cooling. The presence of the ferroelectric-paraelectric phase transition is also confirmed by the PME technique for the first time in this study. PME was proved to be a very sensitive tool in the measurement of the structural changes at the nano-thickness films.

폴리올법으로 제조된 Pt/C 촉매의 연료전지 적용을 위한 나노 입자 크기제어 (Nano particle size control of Pt/C catalysts manufactured by the polyol process for fuel cell application)

  • 허준;윤혁준;최지훈;문채린;최순목
    • 한국표면공학회지
    • /
    • 제56권6호
    • /
    • pp.437-442
    • /
    • 2023
  • This research aims to enhance the efficiency of Pt/C catalysts due to the limited availability and high cost of platinum in contemporary fuel cell catalysts. Nano-sized platinum particles were distributed onto a carbon-based support via the polyol process, utilizing the metal precursor H2PtCl6·6H2O. Key parameters such as pH, temperature, and RPM were carefully regulated. The findings revealed variations in the particle size, distribution, and dispersion of nano-sized Pt particles, influenced by temperature and pH. Following sodium hydroxide treatment, heat treatment procedures were systematically executed at diverse temperatures, specifically 120, 140, and 160 ℃. Notably, the thermal treatment at 140 ℃ facilitated the production of Pt/C catalysts characterized by the smallest platinum particle size, measuring at 1.49 nm. Comparative evaluations between the commercially available Pt/C catalysts and those synthesized in this study were meticulously conducted through cyclic voltammetry, X-ray diffraction (XRD), and field-emission scanning electron microscopy-energy dispersive X-ray spectroscopy (FE-SEM EDS) methodologies. The catalyst synthesized at 160 ℃ demonstrated superior electrochemical performance; however, it is imperative to underscore the necessity for further optimization studies to refine its efficacy.

RF 유도 열플라즈마를 이용한 유기 용매로 부터의 탄화규소 나노 분말 합성 (Synthesis of Silicon Carbide Nano-Powder from a Silicon-Organic Precursor by RF Inductive Thermal Plasma)

  • 고상민;구상만;김진호;조우석;황광택
    • 한국세라믹학회지
    • /
    • 제49권6호
    • /
    • pp.523-527
    • /
    • 2012
  • Silicon carbide (SiC) has recently drawn an enormous amount of industrial interest due to its useful mechanical properties, such as its thermal resistance, abrasion resistance and thermal conductivity at high temperatures. In this study, RF thermal plasma (PL-35 Induction Plasma, Tekna CO., Canada) was utilized for the synthesis of high-purity SiC powder from an organic precursor (hexamethyldisilazane, vinyltrimethoxysilane). It was found that the SiC powders obtained by the RF thermal plasma treatment included free carbon and amorphous silica ($SiO_2$). The SiC powders were further purified by a thermal treatment and a HF treatment, resulting in high-purity SiC nano-powder. The particle diameter of the synthesized SiC powder was less than 30 nm. Detailed properties of the microstructure, phase composition, and free carbon content were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), a thermogravimetric (TG) analysis, according to the and Brunauer-Emmett-Teller (BET) specific surface area from N2 isotherms at 77 K.

Preparation and Cyclic Performance of Li1.2(Fe0.16Mn0.32Ni0.32)O2 Layered Cathode Material by the Mixed Hydroxide Method

  • Karthikeyan, K.;Nam, K.W.;Hu, E.Y.;Yang, X.Q.;Lee, Y.S.
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권7호
    • /
    • pp.1995-2000
    • /
    • 2013
  • Layered $Li_{1.2}(Fe_{0.16}Mn_{0.32}Ni_{0.32})O_2$ was prepared by the mixed hydroxide method at various temperatures. Xray diffraction (XRD) pattern shows that this material has a ${\alpha}-NaFeO_2$ layered structure with $R{\bar{3}}m$ space group and that cation mixing is reduced with increasing synthesis temperature. Scanning electron microscopy (SEM) reveals that nano-sized $Li_{1.2}(Fe_{0.16}Mn_{0.32}Ni_{0.32})O_2$ powder has uniform particle size distribution. X-ray absorption near edge structure (XANES) analysis is used to study the local electronic structure changes around the Mn, Fe, and Ni atoms in this material. The sample prepared at $700^{\circ}C$ delivers the highest discharge capacity of 207 $mAhg^{-1}$ between 2-4.5 V at 0.1 $mAcm^{-2}$ with good capacity retention of 80% after 20 cycles.

초미세 나노분말 γ-Fe2O3의 초상자성 특성연구 (Superparamagnetic Properties of γ-Fe2O3 Nanoparticles)

  • 이승화;이재광;채광표;안성용
    • 한국자기학회지
    • /
    • 제20권5호
    • /
    • pp.196-200
    • /
    • 2010
  • Sol-gel 법을 이용하여 초상자성 나노 입자 $\gamma-Fe_2O_3$를 제조하였다. 입자의 크기 및 자기적 성질을 x-선 회절법(XRD), Mossbauer 분광법, 진동시료 자화율 측정기(VSM)를 이용하여 연구하였다. x-선 회절 실험결과 150 이상에서 열처리한 입자는 순수한 cubic spinel 구조를 가지며, $150^{\circ}C$에서 열처리한 $\gamma-Fe_2O_3$의 평균입자 크기는 7 nm로다. Mossbauer 분광실험으로 $150^{\circ}C$에서 열처리한 입자는 상온에서 초상자성의 특성을 가지고 있음을 알 수 있었으며 초상자성의 특성을 잃어버리는 차단온도 $T_B$$183^{\circ}C$로 결정하였으며, 또한 자기이방성상수 K = $1.6{\times}10^6erg/cm^3$의 값을 얻었다. $150^{\circ}C$에서 열처리한 $\gamma-Fe_2O_3$의 VSM 측정 결과로부터 $150^{\circ}C$에서 열처리한 $\gamma-Fe_2O_3$의 경우 상온에서 초상자성의 특성을 확인 할 수 있었다.

RF 마그네트론 스퍼터링 법으로 유리 기판 위에 성장 시킨 Ga 도핑된 ZnO 박막의 열처리에 따른 구조적, 광학적 특성 평가 (Structural and optical properties of heat-treated Ga doped ZnO thin films grown on glass substrate by RF magnetron sputtering)

  • 이지수;김금채;전훈하;황보수정;김도현;성창모;전민현
    • 한국진공학회지
    • /
    • 제17권1호
    • /
    • pp.23-27
    • /
    • 2008
  • 본 연구에서는 상온에서 RF 마그네트론 스퍼터링 법으로 유리 기판위에 증착된 Ga 도핑 된 다결정 ZnO 박막의 특성을 개선하기 위하여 적정 열처리 조건을 분석하였다. 먼저 박막 성장 후 박막의 특성을 분석하였고 각각 $400{\sim}600^{\circ}C$에서 30분, 60분간 질소 분위기에서 열처리를 한 후 구조적, 광학적 특성을 평가하였다. XRD와 FE-SEM을 사용하여 열처리온도 변화에 따른 결정입자의 크기의 변화를 관찰하였다. 그 결과 성장된 결정의 크기의 증가와 박막의 결정성이 향상되었음을 확인할 수 있었으며 그로 인해 박막 특성을 중시하는 투명 전도막의 투과도의 향상 또한 확인할 수 있었다. 결론적으로, 본 실험을 통하여 ZnO 성장 후 적절한 열처리를 수행함으로서 GZO 박막을 사용하여 제작된 소자의 특성을 개선할 수 있으리라 판단된다.