Browse > Article
http://dx.doi.org/10.4283/JKMS.2010.20.5.196

Superparamagnetic Properties of γ-Fe2O3 Nanoparticles  

Lee, Seung-Wha (Department of Applied Physics, Konkuk University)
Lee, Jae-Gwang (Department of Applied Physics, Konkuk University)
Chae, Kwang-Pyo (Department of Applied Physics, Konkuk University)
An, Sung-Yong (LCR Division, Samsung Electro-Mechanics CO.)
Abstract
$\gamma-Fe_2O_3$ nanoparticles have been prepared by a sol-gel method. The structural and magnetic properties have been investigated by XRD, VSM and Mossbauer spectroscopy. $\gamma-Fe_2O_3$ powder annealed at $150^{\circ}C$ has a spinel structure and superparamagnetical behavior. The estimated size of superparammagnetic $\gamma-Fe_2O_3$ nanoparticle is around 7 nm. The hyperfine fields at $-261^{\circ}C$ for the A and B patterns were found to be 503 and 485 kOe, respectively. The blocking temperature ($T_B$) of superparammagnetic $\gamma-Fe_2O_3$ nanoparticle is about $-183^{\circ}C$. The magnetic anisotropy constant of $\gamma-Fe_2O_3$ nanoparticle was calculated to be $1.6{\times}10^6ergs/cm^3$. $\gamma-Fe_2O_3$ nanoparticle annealed at $150^{\circ}C$ can be a candidate for biomedicine applications as magnetic carriers.
Keywords
superparamagnetic; Mossbauer spectroscopy; nano-particle$\gamma-Fe_2O_3$;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. W. Lee and C. S. Kim, J. Magnetics 10, 5 (2005).   과학기술학회마을   DOI   ScienceOn
2 J. H. Lee, Y. M. Huh, Y. W. Jun, J. W. Seo, J. T. Jang, H. T. Song, E. J. Cho, H. G. Yoon, J. S. Suh, and J. W. Cheon, Nat. Med. 13, 1467 (2007).   DOI   ScienceOn
3 S. Vaidya, K. V. Ramanujachary, S. E. Lofland, and Ashok K. Ganguli, Cryst. Growth Des. 9, 1677 (2009).   DOI   ScienceOn
4 S. H. Im, T. Herricks, Y. T. Lee, and Y. Xia, Chem. Phys. Lett. 401, 19 (2005).   DOI   ScienceOn
5 Y. Qiang, J. Antony, M. G. Marino, and S. Pendyala, IEEE Trans. Magn. 40, 3538 (2004).   DOI   ScienceOn
6 S. W. Hyun, T. Kouh, S. J. Kim, and C. S. Kim, J. Appl. Phys. 105, 07A506 (2009)   DOI   ScienceOn
7 Hao Zeng, Jing Li, Z. L. Wang, J. P. Liu, and Shouheng Sun, Nano Lett. 4, 187 (2004).   DOI   ScienceOn
8 Z. Xu, Y. Hou, and S. Sun, J. Am. Chem. Soc. 129, 8698 (2007).   DOI   ScienceOn
9 X. Liu, Q. Hu, X. Zhang, Z. Fang, and Q. Wang, J. Phys. Chem. C 112, 12729 (2008).
10 M. Ghosh, G. Lawes, A. Gayen, G. N. Subbanna, W. M. Reiff, M. A. Subramanian, A. P. Ramirez, J. P. Zhang, and R. Seshadri, Chem. Mater. 16, 118 (2004).   DOI   ScienceOn
11 W. C. Kim, C. H. Rhee, H. J. Kim, S. J. Moon, and C. S. Kim, Appl. Phys. Lett. 96, 242505 (2010).   DOI   ScienceOn
12 H. P. klug and I. E. Alexander, X-ray Diffraction Proceduer, 2nd Ed. Wiley, New York (1974).
13 S. W. Lee, J. G. Lee, K. P. Chae, W. H. Kwon, and C. S. Kim, J. Kor. Magn. Soc. 19, 57 (2009).   DOI   ScienceOn
14 L. Neel, Ann. Geophys. 5, 39 (1949).
15 A. J. Rondinone, A. C. S. Samia, and Z. J. Zhang, Appl. Phys. Lett. 76, 3624 (2000).   DOI   ScienceOn
16 S. Y. An, I. B. Shim, and C. S. Kim, J. Magn. Magn. Mater. 290, 1551 (2005).   DOI   ScienceOn
17 B. K. Nath, P. K. Chakrabarti, S. Das, U. Kumar, P. K. Mukhopadhyay, and D. Das, Eur. Phys. B 39, 417 (2004).   DOI