• Title/Summary/Keyword: Nano $Fe_xC$

Search Result 120, Processing Time 0.024 seconds

Effects of Nano FexC Addition on Superconducting Properties of MgB2 (MgB2 초전도 특성에 대한 나노 FexC 첨가 효과)

  • Lee, Dong-Gun;Lee, Ji-Hyun;Jun, Byung-Hyuk;Park, Soon-Dong;Uhm, Young-Rang;Park, Hai-Woong;Kim, Chan-Joong
    • Journal of Powder Materials
    • /
    • v.19 no.2
    • /
    • pp.146-150
    • /
    • 2012
  • The effects of nano $Fe_xC$ addition to superconducting properties of $in$ $situ$ processed $MgB_2$ superconductors was examined. 0.1 wt.% and 1 wt.% nano $Fe_xC$ powders were mixed with boron and magnesium powders by ball milling. The powder mixtures were made into pellets by uniaxial pressing. The pellets were heat-treated at $700^{\circ}C-900^{\circ}C$ in argon atmosphere for $MgB_2$ formation. It was found by powder X-ray diffraction that the raw powders were completely converted into $MgB_2$ after the heat treatment. The superconducting transition temperature ($T_c$) and critical current density ($J_c$), estimated from susceptibility-temperature and $M-H$ curves, were decreased by nano $Fe_xC$ addition. The $T_c$ and $J_c$ decrease by nano $Fe_xC$ addition are attributed to the incorporation of iron and carbon with $MgB_2$ lattices (Fe substitution for Mg and C substitution for B) due to the high reactivity of the nano $Fe_xC$ powder.

Room Temperature Ferromagnetism on Co and Fe Doped Multi-wall Carbon Nano-tube

  • Chae, K.H.;Gautam, S.;Yu, B.Y.;Song, J.H.;Augustine, S.;Kang, J.K.;Asokan, K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.171-171
    • /
    • 2011
  • Co and Fe doped multi-wall carbon nano-tubes (MWCNTs) synthesized by microwave plasma enhanced chemical vapor deposition (PECVD) technique are investigated with synchrotron radiations at Pohang Light Source (PAL) and European Synchrotron Radiation Facility (ESRF). Near edge x-ray absorption spectroscopy (NEXAFS) measurement at C K, Co $L_{3,2}$ and Fe $L_{3,2}$-edges, and x-ray magnetic circular dichroism (XMCD) at Co and Fe $L_{3,2}$-edges have been carried at 7B1 XAS KIST and 2A MS beamline, respectively, to understand the electronic structure and responsible magnetic interactions at room temperature. X-ray absorption spectroscopy (XAS) at C K-edge shows significant p-bonding and Co and Fe L-edges proves the presence of $Co^{2+}$ and $Fe^{2+}$ in octahedral symmetry. Co and Fe doped MWCNTs show good XMCD spectra at 300K. The effect on the magnetism is also studied through swift heavy ion (SHI) radiations and magnetism is found enhanced and change in the electronic structure in Co-CNTs is investigated.

  • PDF

Effect of Ag on microstructural behaviour of Nanocrystalline $Fe_{87-x}Zr_7B_6Ag_x$($0{\leq}x_{Ag}{\leq}4$) Magnetic Thin Films Materials

  • Lee, W.J.;Min, B.K.;Song, J.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.3-6
    • /
    • 2002
  • Effect of Ag additive element on microstructure of $Fe_{87-x}Zr_7B_6Ag_x$, magnetic thin films on Si(001) substrates has been investigated using Transmission Electron Microscopy(TEM) and X-ray Diffraction(XRD). All samples with additive Ag element were made by DC-sputtering and subjected to annealing treatments of $300^{\circ}C{\siim}600^{\circ}C$ for 1 hr. TEM and XRD showed that perfectly amorphous state in Ag-free Fe-based films was observed in as-deposited condition. The as-deposited Fe-based films with the presence of Ag constituent have a mixture of Fe-based amorphous and nano-sized Ag crystalline phases. In this case, additive element, Ag was soluted into Fe-based matrix. With the increase in additive element, Ag, insoluble nano-crystalline Ag particles were dispersed in the Fe-based amorphous matrix. Crystallization of Fe-based amorphous phase in the matrix of $Fe_{82}Zr_7B_6Ag_5$ thin films occurred at an annealing temperature of $400^{\circ}C$. Upon annealing, the amorphous-Ag crystalline state of Fe-Zr-B-Ag films was transformed into the mixture of Ag crystalline phase + Fe-based amorphous phase + ${\alpha}$-Fe cluster followed by the crystallization process of ${\alpha}$-Fe nanocrystalline + Ag crystalline phases.

  • PDF

Synthesis and Characterization of ZnxMN1−xFe2O4 Nanoparticles by a Reverse Micelle Process

  • Kim, Sun-Woog;Kim, Hyeon-Cheol;Kim, Jun-Seop;Kim, Hyun-Ju;Bae, Dong-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.6
    • /
    • pp.320-323
    • /
    • 2008
  • The preparation of $Zn_xMn_{1-x}Fe_2O_4$ nanoparticles in an Igepal CO-520-cyclohexane water reverse micelle solution has been studied. The transmission electron microscopy and X-ray diffraction pattern analyses revealed the resulting particles to be $Zn_xMn_{1-x}Fe_2O_4$. The average size and distribution of the synthesized particles calcined at $500^{\circ}C$ for 5 h were in the range of 10 to 20 nm and broad, respectively. The phase of the synthesized particles was crystalline, the magnetic behavior of the synthesized particles was ferromagnetic. The effect of the synthesis parameters, such as the molar ratio of water to surfactant and calcination temperature, is discussed.

Synthesis and Characterization of NixMn1-xFe2O4 Nanoparticles by a Reverse Micelle Process

  • Kim, Sun-Woog;Kim, Hyeon-Cheol;Kim, Jun-Seop;Kim, Hyun-Ju;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.298-301
    • /
    • 2008
  • A preparation of $Ni_xMn_{1-x}Fe_2O_4$ nanoparticles produced via the reduction of Nickel nitrate hexahydrate, Manganese (II) nitrate hexahydrate and Iron nitrate nonahydrate with hydrazine in Igepal CO-520/cyclohexane reverse micelle solutions was investigated. Transmission Electron Microscope (TEM), X-ray Diffraction (XRD) and Vibration Sample Magnetometer (VSM) analyses showed that the resultant nanoparticles increased the molar ration of water to Igepal CO-520 as the concentrations of Nickel nitrate hexahyrate, Manganese (II) nitrate hexahydrate and Iron nitrate nonahydrate increased. The average size of the synthesized particles calcined at $600^{\circ}C$ for 2hrs was in the range of 20 nm to 30 nm, and the particle distribution was broadened. The phase of the synthesized particles was crystalline, and the magnetic behavior of the synthesized particles was superparamagnetism. The effect of the synthesis parameters of the molar ratio of water to surfactant and the calcination temperature was discussed.

Magnetic Properties and Impedance Spectroscopic Studies of Multiferroic Bi1-xNdxFeO3 Materials

  • Thang, Dao Viet;Thao, Du Thi Xuan;Minh, Nguyen Van
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.29-34
    • /
    • 2016
  • Nd-doped $BiFeO_3$ materials were synthesized via a sol-gel method. The crystal structure, magnetic properties, and complex impedance spectroscopy of multiferroic $Bi_{1-x}Nd_xFeO_3$ (BNFO) materials were investigated by X-ray diffraction (XRD), Raman scattering, vibrating sample magnetometer (VSM), and complex impedance spectroscopy. Our results show that the lattice crystal constants (a, c) and the ratio c/a of BNFO materials decreased with increasing Nd concentration. All samples exhibited weak ferromagnetism at room temperature, and the magnetization of samples was enhanced by the presence of $Nd^{3+}$ ions. There was an enhancement in the spontaneous magnetization of BFO with increasing Nd concentration, which is attributable to the collapse of the spin cycloid structure.

Study on Formation of FePd Nano-dot Using Agglomeration of Fe/Au Bilayer (Fe/Au 이중층의 응집현상을 이용한 FePd 나노 점 형성에 관한 연구)

  • Koo, J.K.;Kim, J.M.;Ryua, D.H.;Choi, B.J.;Kim, D.W.;Lee, D.H.;Kim, U.I.;Mitani, S.;J.G., M. Kamiko;Ha, J.G.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.1
    • /
    • pp.7-13
    • /
    • 2011
  • [ $L1_0$ ]phase FePd nano-dot structures were successfully fabricated on self-organized Fe/Au bilayers. With atomic force microscopy, it is determined that surface morphologies of initially flat Fe/Au bilayer films were agglomerated and transformed their shape into nano-dots structures with increasing annealing temperature. With this bilayer as a template, FePd multilayers were deposited at various temperatures, i.e. $300^{\circ}C$, $350^{\circ}C$, $400^{\circ}C$, and $450^{\circ}C$. Surface morphologies of FePd superlattice had a near resemblance to self-organized bilayer. According to X-ray diffraction results, it is confirmed that $L1_0$ superlattice structures of FePd were obtained from samples which were annealed above $350^{\circ}C$. Results of X-ray photoelectron spectroscopy depth-profile analysis showed that chemical composition is identical to deposition sequence. As a result, without additional etching processes, fabrication of chemically ordered FePd superlattice nano-dots was achieved.

Magnetic Properties of Fe4N Nanoparticles and Magnetic Fe17Sm2Nx Powders (Fe4N 나노분말과 Fe17Sm2Nx 자성분말의 자기적 특성)

  • Oh, Young-Woo;Lee, Jung-Goo;Park, Sang-Jun
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.3
    • /
    • pp.79-84
    • /
    • 2012
  • Nano-magnetic materials such as iron-nitrides have been actively studied as an alternative to the application of high density, high performance needs for next generation information storage and also alternative to the rare earth and neodymium magnet. $Fe_4N$ is the basic materials for magnetic storage media and is one of the important magnetic materials in focus because of its higher magnetic recording density and chemical stability. Single phase ${\gamma}^{\prime}-Fe_4N$ nanoparticles have been prepared by a PAD (Plasma Arc Discharge) method and nitriding in a $NH_3-H_2$ mixed gases at temperature, $400^{\circ}C$ for 4 hrs. Also $Fe_{17}Sm_2N_x$ powders were synthesized by nitriding after reduction/diffusion of $Fe_{17}Sm_2$ to compare the magnetic properties with nano-sized $Fe_4N$ particles. The saturation magnetization of $Fe_4N$ and $Fe_{17}Sm_2N_x$ were 149 and 117 emu/g, respectively, but the coercive force was considerably smaller than that of bulk or acicular $Fe_4N$.

Crystallization and Magnetic Properties of Non-Equilibrium Al(Fe-Cu) Alloy Powders Produced by Rod Milling and Chemical Leaching (Rod Milling과 Chemical Leaching에 의해 제작된 비평형 Al(Fe-Cu) 합금 분말의 결정화 및 자기적 특성)

  • Kim Hyun-Goo
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.486-492
    • /
    • 2004
  • We report the crystallization and magnetic properties of non-equilibrium $Al_{0.6}(Fe_{x}Cu_{1-x})_{0.4}(x=0.25, 0.50, 0.75)$ alloy powders produced by rod-milling as well as by new chemical leaching. X-ray diffractometry, transmission electron microscopy, differential scanning calorimetry and vibrating sample magnetometry were used to characterize the as-milled and leached specimens. After 400 h or 500 h milling, only the broad peaks of nano bcc crystalline phases were detected in the XRD patterns. The crystallite size, the peak and the crystallization temperatures increased with increasing Fe. After being annealed at $600{^\circ}C$ for 1 h for as-milled alloy powders, the peaks of bcc $AlCu_{4}\;and\;Al_{13}Cu_{4}Fe_{3}\;for\;x=0.25,\;bcc\;AlCu_{4}\;and\;Al_{5}Fe_{2}\;for\;x=0.50,\;and\;Al_{5}Fe_{2},\;and\;Al_{0.5}Fe_{0.5}\;for\;x=0.75$ are observed. After being annealed at $500{^\circ}\;and\;600{^\circ}C$for 1 h for leached specimens, these non-equi-librium phases transformed into fcc Cu and $CuFe_{2}O_{4}$phases for the x=0.25 specimen, and into bcc ${\alpha}-Fe,\;fcc\;Cu,\;and\;CuFe_{2}O_{4}$ phases for both the x=0.50 and the x=0.75 specimens. The saturation magnetization decreased with increasing milling time for $Al_{0.6}(Fe_{x}Cu_{1-x})_{0.4}$ alloy powders. On cooling the leached specimens from $800{\~}850^{\circ}C$,\;the magnetization first sharply increase at about $491.4{\circ}C,\;745{\circ}C,\;and\;750.0{\circ}C$ for x=0.25, x=0.50, and x=0.75 specimens, repectively.

Electrical Transport Properties and Magnetoresistance of (1-x)La0.7Sr0.3MnO3/xZnFe2O4 Composites

  • Seo, Yong-Jun;Kim, Geun-Woo;Sung, Chang-Hoon;Lee, Chan-Gyu;Koo, Bon-Heun
    • Korean Journal of Materials Research
    • /
    • v.20 no.3
    • /
    • pp.137-141
    • /
    • 2010
  • The $(1-x)La_{0.7}Sr_{0.3}MnO_3(LSMO)/xZnFe_2O_4$(ZFO) (x = 0, 0.01, 0.03, 0.06 and 0.09) composites were prepared by a conventional solid-state reaction method. We investigated the structural properties, magnetic properties and electrical transport properties of (1-x)LSMO/xZFO composites using X-ray diffraction (XRD), scanning electron microscopy (SEM), field-cooled dc magnetization and magnetoresistance (MR) measurements. The XRD and SEM results indicate that LSMO and ZFO coexist in the composites and the ZFO mostly segregates at the grain boundaries of LSMO, which agreed well with the results of the magnetic measurements. The resistivity of the samples increased by the increase of the ZFO doping level. A clear metal-to-insulator (M-I) transition was observed at 360K in pure LSMO. The introduction of ZFO further downshifted the transition temperature (350K-160K) while the transition disappeared in the sample (x = 0.09) and it presented insulating/semiconducting behavior in the measured temperature range (100K to 400K). The MR was measured in the presence of the 10kOe field. Compared with pure LSMO, the enhancement of low-field magnetoresistance (LFMR) was observed in the composites. It was clearly observed that the magnetoresistance effect of x = 0.03 was enhanced at room temperature range. These phenomena can be explained using the double-exchange (DE) mechanism, the grain boundary effect and the intrinsic transport properties together.