Browse > Article
http://dx.doi.org/10.3740/MRSK.2008.18.6.298

Synthesis and Characterization of NixMn1-xFe2O4 Nanoparticles by a Reverse Micelle Process  

Kim, Sun-Woog (School of Nano & Advanced Materials Science Engineering., Changwon National Univ.)
Kim, Hyeon-Cheol (School of Nano & Advanced Materials Science Engineering., Changwon National Univ.)
Kim, Jun-Seop (School of Nano & Advanced Materials Science Engineering., Changwon National Univ.)
Kim, Hyun-Ju (School of Nano & Advanced Materials Science Engineering., Changwon National Univ.)
Bae, Dong-Sik (School of Nano & Advanced Materials Science Engineering., Changwon National Univ.)
Publication Information
Korean Journal of Materials Research / v.18, no.6, 2008 , pp. 298-301 More about this Journal
Abstract
A preparation of $Ni_xMn_{1-x}Fe_2O_4$ nanoparticles produced via the reduction of Nickel nitrate hexahydrate, Manganese (II) nitrate hexahydrate and Iron nitrate nonahydrate with hydrazine in Igepal CO-520/cyclohexane reverse micelle solutions was investigated. Transmission Electron Microscope (TEM), X-ray Diffraction (XRD) and Vibration Sample Magnetometer (VSM) analyses showed that the resultant nanoparticles increased the molar ration of water to Igepal CO-520 as the concentrations of Nickel nitrate hexahyrate, Manganese (II) nitrate hexahydrate and Iron nitrate nonahydrate increased. The average size of the synthesized particles calcined at $600^{\circ}C$ for 2hrs was in the range of 20 nm to 30 nm, and the particle distribution was broadened. The phase of the synthesized particles was crystalline, and the magnetic behavior of the synthesized particles was superparamagnetism. The effect of the synthesis parameters of the molar ratio of water to surfactant and the calcination temperature was discussed.
Keywords
$Ni_xMn_{1-x}Fe_2O_4$ nanoparticles; reverse micelle and superparamagnetism;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
1 J. A. Brug, T. C. Anthony and J. H. Nickel, Magnetic Recording Head Materials, MRS Bull., Sept., 23 (1996)
2 S. Komarneni, E. Freagan, E. Bravel and R. Roy, J. Am. Ceram. Sci., 71(1), C26 (1988)   DOI
3 R. F. Ziolo, E. P. Giannelis, B. A. Weinstein, M. P. Ohoro, B. N. Ganguly, V. Mehrotra, M. W. Russell and D. R. Huffman, Science, 257, 219 (1992)   DOI   ScienceOn
4 J. M. D. Coey, J. Phys. Rev. Lett., 27, 1140 (1971)   DOI
5 K. Ossed-Asare, and F. J. Arriagada, Ceram. Trans., 12, 3 (1990)
6 V. pillai, P. Kumar, M. J. Hou, P. Ayyub, and D. D. Shah, Ady. Colloid Interface Sci., 55, 241 (1995)   DOI   ScienceOn
7 Ph. Monnoyer, A. Fonseca, J. B. Nagy, Colloid Surf. A: Physicochemical Eng. Aspects, 100, 233 (1995)   DOI   ScienceOn
8 M. P. Pileni, J. Phys. Chem., 97, 6961 (1993)   DOI   ScienceOn
9 L. A. Garcia-Cerda, J. Alloy. Compd., 369, 148 (2004)   DOI   ScienceOn
10 D. S. Bae, S. W. Park, K. S. Han and J. H. Adair, Metals and Materials Int., 7(4), 399 (2001)   DOI
11 B. K. Paul and S. P. Moulik, J. Dispersion Sci. Technol., 18, 301 (1997)   DOI   ScienceOn
12 V. E. Fertman, Magnetic Fluids Guidebook, Properties and Applications, Chp. 3, Hemisphere Publishing Corp, (1990)
13 D. S. Bae, S. W. Kim, H. W. Lee and K. S. Han, Mater. Lett., 57, 1997 (2003)   DOI   ScienceOn
14 M. Shinkai, J. Biosci. Bioeng., 94, 606 (2002)   DOI   ScienceOn
15 M. Rozman and M. Drofenik, J. Am. Ceram. Soc., 78(9), 2449 (1990)   DOI   ScienceOn
16 M. Seki, J. Sato and S. Usui, J. Appl. Phys., 63(5), 1424 (1988)   DOI
17 J. R. Ahn, D. S. Bae and J. S. Kim, J. Kor. Ceram. Soc., 37(10), 962 (2000)
18 P. Sainamthip and V. R. W. Amarakoon, J. Am. Ceram. Soc., 71(2), C-92 (1988)   DOI