• Title/Summary/Keyword: Nafion$^{(R)}$

Search Result 59, Processing Time 0.023 seconds

Effect of Nafion Chain Length on Proton Transport as a Binder Material (수소이온 전달 특성에 미치는 바인더로 활용 가능한 나피온의 주쇄 길이의 영향)

  • Kang, Hoseong;Park, Chi Hoon
    • Membrane Journal
    • /
    • v.30 no.1
    • /
    • pp.57-65
    • /
    • 2020
  • The purpose of this study was to compare the water channel morphology and the proton conductivity by changing the number of repeating units of the polymer backbone of PEMs, and to present a criterion for selecting an appropriate polymer model for MD simulation. In the model with the shortest polymer main chain, the movement of the main chain and the sulfonic acid group was observed to be large, but no change in the water channel morphology was found. In addition, due to the nature of the proton transport ability that is most affected by the water channel morphology, the proton conductivity did not show a significant correlation with the length of the polymer backbone. These results provide important information, particularly for the preparation of ionomers for binders. In general, a low molecular weight polymer electrolyte material is used for a binder ionomer. Since the movement of the main chain/sulfonic acid group is improved, it can play a role of enclosing the catalyst layer well. However, there is no change in its proton conducting performance. In conclusion, the preparation of ionomers for binders will require molecular weight and structure design with a focus on physical properties rather than proton transfer performance.

Preparation and Characterization of Fluorenyl Polymer Electrolyte Membranes Containing PFCB Groups (PFCB Group을 포함한 Fluorene계 고분자 전해질막 제조 및 특성연구)

  • Kim Jeong-Hoon;Kim Dong-Jin;Chang Bong-Jun;Shin Chong-Kyu;Lee Soo-Bok;Joo Hyeok-Jong
    • Membrane Journal
    • /
    • v.16 no.1
    • /
    • pp.16-24
    • /
    • 2006
  • We report on the preparation and characterization of sulfonated polymer membranes containing perfluorocyclobutane (PFCB) units and fluorene units. The polymers were prepared through three synthetic steps, that is, the synthesis of a trifluorovinylether-terminated monomer, its thermal polymerization, and post-sulfonation using chlorosulfonic acid. A series of sulfonated polymers with different ion exchange capacity (IEC) were prepared by changing the content of chlorosulfonic acid during the post-sulfonation reaction. All the synthesized compounds were characterized by FT-IR, $^{1}H-NMR,\;^{19}F-NMR$, and Mass spectroscopy. As the content of chlorosulfonic acid increased, the SD, IEC, water uptake, and ion conductivity of the sulfonated polymer membranes increased. The sulfonated polymer 4 showed higher values of ion conductivity than the Nafion-$115^{\circledR}$ in a wide range of temperatures ($25{\sim}80^{\circ}C$).

Behaviors of Ionic Conductivity with Temperature for High-Temperature PEMFC Containing Room Temperature ionic Liquids Under Non-humidified Condition (상온 이온액을 이용한 고온 무수 PEMFC용 고정화 액막의 온도에 따른 이온전도도 거동)

  • Kim, Beom-Sik;Byun, Yong-Hoon;Park, You-In;Lee, Sang-Hak;Lee, Jung-Min;Koo, Kee-Kahb
    • Membrane Journal
    • /
    • v.16 no.4
    • /
    • pp.268-275
    • /
    • 2006
  • Novel SILEMs were prepared by multi-stage phase separation process combined by the low temperature phase separation (LTPS) and the high temperature phase separation (HTPS) using room temperature ionic liquids (RTILs) which have a high ionic conductivity. PVDF and imidazolium series ionic liquids were used as membrane material and electrolyte, respectively. To study the ion conducting properties, the SILEMs were tested using LCR meter at temperature controlled from 30 to $130^{\circ}C$. Under humid conditions, with increasing temperature from 30 to $100^{\circ}C$, the ion conductivity of the cast $Nafion^{(R)}$ membrane increased linearly, but then started to decrease after $100^{\circ}C$. However, in the case of the SILEMs, with increasing operating temperature, the ion conductivity increased. Also, the ion conductivity behaviors of the SILEMs were almost same, regardless of humidity. The ion conductivity of the SILEMs was $2.7{\times}10^{-3}S/cm$ and increased almost linearly up to $2.2{\times}10^{-2}S/cm$ with increasing temperature to $130^{\circ}C$. The effects of an inorganic filler on the physical properties of the SILEMs were studied using the $SiO_2$. The addition of $SiO_2$ could improve the mechanical strength of the SILEMs, though the ionic conductivity was decreased slightly.

The Electrochemical Characteristics of MEA with Pt/Cross-Linked SPEEK-HPA Composite Membranes/Pt-Ru for Water Electrolysis (수전해용 Pt/공유가교 SPEEK-HPA 복합막/Pt-Ru MEA의 전기화학적 특성)

  • Hwang, Yong-Koo;Woo, Je-Young;Lee, Kwang-Mun;Chung, Jang-Hoon;Moon, Sang-Bong;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.3
    • /
    • pp.194-201
    • /
    • 2009
  • The e1ectrocatalytic properties of heteropolyacids(HPAs) entrapped in covalently cross-linked sulfonated polyetheretherketone(CL-SPEEK/HPA) membranes have been studied for water electrolysis. The HPAs, including tungstophosphoric acid(TPA), molybdophosphoric acid(MoPA), and tungstosilicic acid(TSiA) were used as additives in the composite membranes. The MEA was prepared by a non-equilibrium impregnation-reduction(I-R) method, using reducing agent, sodium borohydride(NaBH4) and tetraamineplatinum(II) chloride(pt(NH$_3$)$_4$Cl$_2$). The electrocatalytic properties of composite membranes such as the cell voltage were in the order of magnitude CL-SPEEKlMoPA40 (wt%) > /TPA30 > /TSiA40. In the optimum cell applications for water electrolysis, the cell voltage of PtlPEM/Pt-Ru MEA with CL-SPEEKlTPA30 membrane was 1.75 V at 80$^{\circ}$C and I A/cm$^2$ and this voltage carried lower than that of 1.81 V of Nafion 117. Consequently, in regards of electrochemical and mechanical characteristics and oxidation durability, the newly developed CL-SPEEKITPA30 composite membrane exhibited a better performance than the others, but CLSPEEKlMoPA40 showed the best electrocatalytic activity (1.71 Vat 80$^{\circ}$C and 1 A/cm$^2$) among the composite membranes.

A Study on the PEM Electrolysis Characteristics Using Ti Mesh Coated with Electrocatalysts (Ti Mesh 처리 촉매전극을 이용한 고체고분자 전해질 전기분해 특성연구)

  • Sim, Kyu-Sung;Kim, Youn-Soon;Kim, Jong-Won;Han, Sang-Do
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.7 no.1
    • /
    • pp.29-37
    • /
    • 1996
  • Alkaline water electrolysis has been commercialized as the only large-scale method for a long time to produce hydrogen and the technology is superior to other methods such as photochemical, thermochemical water splitting, and thermal decomposition method in view of efficiency and related technical problem. However, such conventional electrolyzer do not have high electric efficiency and productivity to apply to large scale hydrogen production for energy or chemical feedstocks. Solid polymer electrolyte water electrolysis using a perfluorocation exchange membrane as an $H^+$ ion conductor is considered to be a promising method, because of capability for operating at high current densities and low cell voltages. So, this is a good technology for the storage of electricity generated by photovoltaic power plants, wind generators and other energy conversion systems. One of the most important R&D topics in electrolyser is how to minimize cell voltage and maximize current density in order to increase the productivity of the electrolyzer. A commercialized technology is the hot press method which the film type electrocatalyst is hot-pressed to soild polymer membrane in order to eliminate the contact resistance. Various technologies, electrocatalyst formed over Nafion membrane surface by means of nonelectrolytic plating process, porous sintered metal(titanium powder) or titanium mesh coated with electrocatalyst, have been studied for preparation of membrane-electrocatalyst composites. In this study some experiments have been conducted at a solid polymer electrolyte water electrolyzer, which consisted of single cell stack with an electrode area of $25cm^2$ in a unipolar arrangement using titanium mesh coated with electrocatalyst.

  • PDF

Fabrication of Electrochemical Microbial Biosensor Based on MWNT Supports Prepared by Radiation-Induced Graft Polymerization (방사선 그래프트법에 의해 제조된 탄소나노튜브 지지체를 기반으로 한 전기화학 미생물 바이오센서의 제작)

  • Shin, Soo-Ran;Kwen, Hai-Doo;Choi, Seong-Ho
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.216-222
    • /
    • 2011
  • A multi-walled carbon nanotube (MWNT) support with dual properties, an ionic property via tetra-amine and unpaired electrons via tri-amine, was prepared by radiation-induced graft polymerization of glycidyl methacrylate (GMA) and the subsequent amination of its epoxy group. The electrochemical microbial biosensor (EMB) was then fabricated by immobilization of a microbe (Alkaligenes spp.) onto the dual property-modified electrode, which was prepared with the mixture of the MWNT support and a $Nafion^{(R)}$ solution on a glass carbon (GC) electrode surface by a hand-casting method. The sensing range of the prepared EMB for phenol in a phosphate buffer solution was 0.005~7.0 mM. The total concentration of phenolic compounds in a commercial red wine was also determined using the EMB.

Electrochemical Oxygen Evolution Reaction on NixFe3-xO4 (0 ≤ x ≤ 1.0) in Alkaline Medium at 25℃

  • Pankaj, Chauhan;Basant, Lal
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.497-503
    • /
    • 2022
  • Spinel ferrites (NixFe3-xO4; x = 0.25, 0.5, 0.75 and 1.0) have been prepared at 550℃ by egg white auto-combustion route using egg white at 550℃ and characterized by physicochemical (TGA, IR, XRD, and SEM) and electrochemical (CV and Tafel polarization) techniques. The presence of characteristic vibration peaks in FT-IR and reflection planes in XRD spectra confirmed the formation of spinel ferrites. The prepared oxides were transformed into oxide film on glassy carbon electrodes by coating oxide powder ink using the nafion solution and investigated their electrocatalytic performance for OER in an alkaline solution. The cyclic voltammograms of the oxide electrode did not show any redox peaks in oxygen overpotential regions. The iR-free Tafel polarization curves exhibited two Tafel slopes (b1 = 59-90 mV decade-1 and b2 = 92-124 mV decade-1) in lower and higher over potential regions, respectively. Ni-substitution in oxide matrix significantly improved the electrocatalytic activity for oxygen evolution reaction. Based on the current density for OER, the 0.75 mol Ni-substituted oxide electrode was found to be the most active electrode among the prepared oxides and showed the highest value of apparent current density (~9 mA cm-2 at 0.85 V) and lowest Tafel slope (59 mV decade-1). The OER on oxide electrodes occurred via the formation of chemisorbed intermediate on the active sites of the oxide electrode and follow the second-order mechanism.

Characteristics of CL-SPEEK/HPA Membrane Electrodes with Pt-Ni and Pt-Co Electrocatalysts for Water Electrolysis (전극 촉매 Pt-Ni 및 Pt-Co를 이용한 수전해용 공유가교 CL-SPEEK/HPA 막전극의 특성)

  • Woo, Je-Young;Lee, Kwang-Mun;Jee, Bong-Chul;Chung, Jang-Hoon;Moon, Sang-Bong;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.1
    • /
    • pp.26-34
    • /
    • 2010
  • The electrocatalystic prperties of Pt-Co and Pt-Ni with heteropolyacids (HPAs) entrapped in covalently cross-linked sulfonated poly(ether ether ketone) (CL-SPEEK)/HPA membranes were investigated for water electrolysis. The HP As, including molybdophosphoric acid (MoPA), and tungstophosphoric acid (TPA) were both used as membrane additives and electrocatalysts. The membrane electrode assembly (MEA) was prepared by a nonequilibrium impregnation-reduction (I-R) method. $Pt(NH_3)_4Cl_2$, $NiCl_2$ and $CoCl_2$ as electrocatalytic materials and $NaBH_4$ as reducing agent were used. I order to enhance electrocatalytic activity, the catalyst layer prepared above was electrodeposited (Dep) with HP A. Surface morphologies and physico-chemical properties of MEA were investigated by means of SEM, EDX and XRD. The electrocatalytic properties of composite membranes such as the cell voltage and coulombic charge in CV were in the order of magnitude: CL-SPEEK/MoPA40 (wt%) > CL-SPEEK/TPA30 > Nafion117. In the optimum cell applications for water electrolysis, the cell voltage of Pt/CL-SPEEK-MoPA40/Pt-Co (Dep-MoPA) and Pt/CL-SPEEK-TPA30/Pt-Co (Dep-TPA) was 1.75 Vat $80^{\circ}C$ and $1\;A/cm^2$ and voltage efficiency was 87.1%. Also, the observed activity of Pt-Co (84:16 atomic ratio by EDX) is a little higher than that of Pt-Ni (86: 14). The current density peak of electrodeposited electrodes were better a little than those of unactivated electrodes based on the same membranes.

Design Factors of Membrane Electrode Assembly for Direct Methanol Fuel Cells. (직접 메탄올 연료전지용 막-전극 접합체의 설계 인자에 관한 연구)

  • Cho, Jae-Hyung;Hwang, Sang-Youp; Kim, Soo-Kil;Ahn, Dong-June;Lim, Tae-Hoon;Ha, Heung-Yong
    • Clean Technology
    • /
    • v.13 no.4
    • /
    • pp.293-299
    • /
    • 2007
  • Direct coating of catalyst layer on the $Nafion^{(R)}$ membrane has been optimized in the process of fabrication of membrane electrode assembly (MEA) to enhance the performance of direct methanol fuel cell (DMFC). In this method, the contact resistance at the interface of the catalyst layer and the membrane was found to be low. The effect of catalyst loading, thickness of membrane and the gas diffusion layer (GDL) with or without the presence of micro-porous layer (MPL) on the performance of the MEA was also investigated. The MEA fabricated by the above-mentioned method exhibited a performance of $147\;mW/cm^2$ and $100\;mW/cm^2$ at $80^{\circ}C$ and $60^{\circ}C$, respectively, with the catalysts loading of $4\;mg/cm^2$.

  • PDF