Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.1.57

Effect of Nafion Chain Length on Proton Transport as a Binder Material  

Kang, Hoseong (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology (GNTECH))
Park, Chi Hoon (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology (GNTECH))
Publication Information
Membrane Journal / v.30, no.1, 2020 , pp. 57-65 More about this Journal
Abstract
The purpose of this study was to compare the water channel morphology and the proton conductivity by changing the number of repeating units of the polymer backbone of PEMs, and to present a criterion for selecting an appropriate polymer model for MD simulation. In the model with the shortest polymer main chain, the movement of the main chain and the sulfonic acid group was observed to be large, but no change in the water channel morphology was found. In addition, due to the nature of the proton transport ability that is most affected by the water channel morphology, the proton conductivity did not show a significant correlation with the length of the polymer backbone. These results provide important information, particularly for the preparation of ionomers for binders. In general, a low molecular weight polymer electrolyte material is used for a binder ionomer. Since the movement of the main chain/sulfonic acid group is improved, it can play a role of enclosing the catalyst layer well. However, there is no change in its proton conducting performance. In conclusion, the preparation of ionomers for binders will require molecular weight and structure design with a focus on physical properties rather than proton transfer performance.
Keywords
polymer electrolyte membrane for fuel cell; $Nafion^{(R)}$; chain length; proton transport; molecular dynamics;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 J. Larminie and A. Dicks, "Fuel Cell Systems Explained", pp. 1-5, Wiley, West Sussex (2003).
2 B. C. H. Steele and A. Heinzel, "Materials for fuel-cell technologies", Nature, 414, 345 (2001).   DOI
3 C. S. Lee, H. S. Shin, J. H. Jun, S. Y. Jung, and J. W. Rhim, "Recent development trends of cation exchange membrane materials", Membr. J., 12, 1 (2002).
4 H. Y. Lee, H. K. Hwang, S. S. Park, S. W. Choi, and Y. G. Shul, "Nafion impregnated electrospun polyethersulfone membrane for PEMFC", Membr. J., 20, 40 (2010).
5 C. H. Park, S. Y. Nam, and Y. T. Hong, "Molecular dynamics (MD) study of proton exchange membranes for fuel cells", Membr. J., 26, 329 (2016).   DOI
6 J. Ahn and C. H. Lee, "Preparation and characterization of sulfonated poly(arylene ether sulfone) random copolymer reinforced membranes for fuel cells", Membr. J., 26, 146 (2016).   DOI
7 S. E. Kang and C. H. Lee, "Perfluorinated sulfonic acid ionomer-PTFE pore-filling membranes for polymer electrolyte membrane fuel cells", Membr. J., 25, 171 (2015).   DOI
8 Y. S. Kim, B. Einsla, M. Sankir, W. Harrison, and B. S. Pivovar, "Structure-property-performance relationships of sulfonated poly(arylene ether sulfone)s as a polymer electrolyte for fuel cell applications", Polymer, 47, 4026 (2006).   DOI
9 C. H. Park, C. H. Lee, M. D. Guiver, and Y. M. Lee, "Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs)", Prog. Polym. Sci., 36, 1443 (2011).   DOI
10 C. H. Park, S. Y. Lee, D. S. Hwang, D. W. Shin, D. H. Cho, K. H. Lee, T.-W. Kim, T.-W. Kim, M. Lee, D.-S. Kim, C. M. Doherty, A. W. Thornton, A. J. Hill, M. D. Guiver, and Y. M. Lee, "Nanocrack-regulated self-humidifying membranes", Nature, 532, 480 (2016).   DOI
11 N. Takimoto, L. Wu, A. Ohira, Y. Takeoka, and M. Rikukawa, "Hydration behavior of perfluorinated and hydrocarbon-type proton exchange membranes: Relationship between morphology and proton conduction", Polymer, 50, 534 (2009).   DOI
12 C. H. Park, C. H. Lee, J.-Y. Sohn, H. B. Park, M. D. Guiver, and Y. M. Lee, "Phase separation and water channel formation in sulfonated block copolyimide", J. Phys. Chem. B, 114, 12036 (2010).   DOI
13 K. Hoseong and C. H. Park, "Investigation of gas transport properties of polymeric membranes having different chain lengths via molecular dynamics (MD)", Membr. J., 28, 67 (2018).   DOI
14 H. Sun, Z. Jin, C. Yang, R. L. Akkermans, S. H. Robertson, N. A. Spenley, S. Miller, and S. M. Todd, "COMPASS II: Extended coverage for polymer and drug-like molecule databases", J. Mol. Model., 22, 1 (2016).   DOI
15 J. H. Lee and C. H. Park, "Effect of force-field types on the proton diffusivity calculation in molecular dynamics (MD) simulation", Membr. J., 27, 358 (2017).   DOI
16 H. Sun, "COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds", J. Phys. Chem. B, 102, 7338 (1998).   DOI
17 J. Yang, Y. Ren, A. Tian, and H. Sun, "COMPASS force field for 14 inorganic molecules, He, Ne, Ar, Kr, Xe, $H_2$, $O_2$, $N_2$, NO, CO, $CO_2$, $NO_2$, $CS_2$, and $SO_2$, in liquid phases", J. Phys. Chem. B, 104, 4951 (2000).   DOI
18 K. D. Kreuer, "Proton conductivity: Materials and applications", Chem. Mater., 8, 610 (1996).   DOI
19 M. Eikerling, A. A. Kornyshev, A. M. Kuznetsov, J. Ulstrup, and S. Walbran, "Mechanisms of proton conductance in polymer electrolyte membranes", J. Phys. Chem. B, 105, 3646 (2001).   DOI
20 K. D. Kreuer, S. J. Paddison, E. Spohr, and M. Schuster, "Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology", Chem. Rev., 104, 4637 (2004).   DOI
21 S. Cukierman, "Et tu, Grotthuss! and other unfinished stories", Biochim. Biophys. Acta, 1457, 876 (2006).   DOI