Browse > Article

Behaviors of Ionic Conductivity with Temperature for High-Temperature PEMFC Containing Room Temperature ionic Liquids Under Non-humidified Condition  

Kim, Beom-Sik (Chemical Process and Engineering Center, Korea Research Institute of Chemical Technology)
Byun, Yong-Hoon (Chemical Process and Engineering Center, Korea Research Institute of Chemical Technology)
Park, You-In (Chemical Process and Engineering Center, Korea Research Institute of Chemical Technology)
Lee, Sang-Hak (Chemical Process and Engineering Center, Korea Research Institute of Chemical Technology)
Lee, Jung-Min (Chemical Process and Engineering Center, Korea Research Institute of Chemical Technology)
Koo, Kee-Kahb (Department of Chemical and Biomolecular Engineering, Sogang University)
Publication Information
Membrane Journal / v.16, no.4, 2006 , pp. 268-275 More about this Journal
Abstract
Novel SILEMs were prepared by multi-stage phase separation process combined by the low temperature phase separation (LTPS) and the high temperature phase separation (HTPS) using room temperature ionic liquids (RTILs) which have a high ionic conductivity. PVDF and imidazolium series ionic liquids were used as membrane material and electrolyte, respectively. To study the ion conducting properties, the SILEMs were tested using LCR meter at temperature controlled from 30 to $130^{\circ}C$. Under humid conditions, with increasing temperature from 30 to $100^{\circ}C$, the ion conductivity of the cast $Nafion^{(R)}$ membrane increased linearly, but then started to decrease after $100^{\circ}C$. However, in the case of the SILEMs, with increasing operating temperature, the ion conductivity increased. Also, the ion conductivity behaviors of the SILEMs were almost same, regardless of humidity. The ion conductivity of the SILEMs was $2.7{\times}10^{-3}S/cm$ and increased almost linearly up to $2.2{\times}10^{-2}S/cm$ with increasing temperature to $130^{\circ}C$. The effects of an inorganic filler on the physical properties of the SILEMs were studied using the $SiO_2$. The addition of $SiO_2$ could improve the mechanical strength of the SILEMs, though the ionic conductivity was decreased slightly.
Keywords
high temperature PEMFC; Room temperature ionic liquids; Multi-stage phase separation process; Supported ionic liquid electrolyte membranes;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. M. J. Zaidi, S. D. Mikhailenko, G. P. Robertson, M. D. Guiver, and S. Kaliaguine, 'Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications', J. Membr. Sci., 173, 17 (2000)   DOI   ScienceOn
2 P. H. Choi, B. S. Kim, J. M. Lee, C. U. Kim. K. K. Koo, and S. H. Lee, 'Gas permeation properties of the novel supported liquid membrane prepared by phase separation technique', J. Korean Ind. Eng. Chem., 15, 99 (2004)
3 J. S. Wainright, J.-T. Wang, D. Weng, R. F. Savinell, and M. Litt, 'Acid-doped polybenzi-midazoles : A new polymer electrolyte', J. Electrochem. Soc., 142, 121 (1995)   DOI   ScienceOn
4 H. J. Lee, J. S. Lee, B. S. Ahn, and H. S. Kim, 'Technology trend in ionic liquids', J. Korean Ind. Eng. Chem., 16, 595 (2005)
5 P. Staiti, F. Lufrano, A. S. Arico, E. Passalacqua, and V. Antonucci, 'Sulfonated polybenzimidazole membranes-preparation and physico-chemical characterization', J. Membr. Sci., 188, 71 (2001)   DOI   ScienceOn
6 G. Alberti, M. Casciola, R. Palombari, 'Inorgano-organic proton conducting membranes for fuel cells and sensors ant medium temperature', J. Membr. Sci., 172, 233 (2000)   DOI
7 A. Schechter and R. F. Savinell, 'Imidazole and 1-methyl imidazole in phosphoric acid doped polybenzimidazole, electrolyte for fuel cells', Solid State Ionics, 147, 181 (2002)
8 K. Sopian and W. R. Wan Daud, 'Challenges and future developments in proton exchange membrane fuel cells, Wan Daud', Renewable Energy, 31, 719 (2006)   DOI   ScienceOn
9 D. Lu, W. Lu, C. Li, J. Liu, and J. Xu, 'Proton-conducting composite membranes derived from poly(2,6-dimethyl-1, 4-phenylene oxide) doped with phosphosilicate gels', Solid State Ionics, 177, 1111 (2006)   DOI   ScienceOn
10 Q. Li, R. He, J. A Gao, J. O. Jensen, and N. J. Bjerrum, 'The CO poisoning effect in PEMFCs operational at temperatures up to $200^{\circ}C$', J. Electrochem. Soc., 150, 1599 (2003)   DOI   ScienceOn
11 M. A. Navarra, S. Panero, and B. Scrosati, 'Novel, ionic-liquid-based, gel-type proton membranes', Electrochem. Solid-state Lett., 8, 324 (2005)
12 S. L. Chen, A. B. Bocarsly, J. Benziger, 'Nafionlayered sulfonated polysulfone fuel cell membranes', J. Power Sources, 152, 27 (2005)   DOI
13 O. Savadogo, 'Emerging membranes for electrochemical systems Part II. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications', J. Power. Sources, 127, 135 (2004)   DOI   ScienceOn
14 S. L. Chen, L. Krishnan, S. Srinivasan, J. Benziger, and A. B. Bocarsly, 'Ion exchange resin/polystyrene sulfonate composite membranes for PEM fuel cells', J. Membr. Sci., 243, 327 (2004)   DOI   ScienceOn
15 C. Yang, P. Costamagna, S. Srinivasan, J. Benziger, and A. B. Bocarsly, 'Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells', J. Power Sources, 103, 1 (2001)   DOI   ScienceOn
16 R. Savinell, E. Yeager, D. Tryk, U. Landau, J. Wainright, D. Weng, et al., 'A polymer electrolyte for operation at temperatures up to $200^{\circ}C$', J. Electrochem. Soc., 141, 46 (1994)   DOI   ScienceOn
17 R. F. Souza, J. C. Padilha, R. S. Goncalves, and J. Dupont, 'Room temperature dialkylimidazolium ionic liquid-based fuel cells', Electrochem. Commun. 5, 728 (2003)   DOI   ScienceOn
18 Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, Approaches and recent development of polymer electrolyte membranes for fuel cells operating above $100^{\circ}C$', Chem. Mater., 15, 4896 (2003)   DOI   ScienceOn
19 S. Malhotra, R. Datta. 'Membrane-supported nonvolatile acidic electrolytes allow higher temperature operation of proton-exchange membrane fuel cells', J. Electrochem. Soc., 144, 23 (1997)   DOI