Browse > Article

Preparation and Characterization of Fluorenyl Polymer Electrolyte Membranes Containing PFCB Groups  

Kim Jeong-Hoon (Interface Materials & Eng. Lab. Division of Advanced Chemical Technology, Korea Research Institute of Chemical Technology)
Kim Dong-Jin (Interface Materials & Eng. Lab. Division of Advanced Chemical Technology, Korea Research Institute of Chemical Technology, Department of Polymer Science and Engineering, Chungnam National University)
Chang Bong-Jun (Interface Materials & Eng. Lab. Division of Advanced Chemical Technology, Korea Research Institute of Chemical Technology)
Shin Chong-Kyu (LG Chem, Ltd./Research park)
Lee Soo-Bok (Interface Materials & Eng. Lab. Division of Advanced Chemical Technology, Korea Research Institute of Chemical Technology)
Joo Hyeok-Jong (Department of Polymer Science and Engineering, Chungnam National University)
Publication Information
Membrane Journal / v.16, no.1, 2006 , pp. 16-24 More about this Journal
Abstract
We report on the preparation and characterization of sulfonated polymer membranes containing perfluorocyclobutane (PFCB) units and fluorene units. The polymers were prepared through three synthetic steps, that is, the synthesis of a trifluorovinylether-terminated monomer, its thermal polymerization, and post-sulfonation using chlorosulfonic acid. A series of sulfonated polymers with different ion exchange capacity (IEC) were prepared by changing the content of chlorosulfonic acid during the post-sulfonation reaction. All the synthesized compounds were characterized by FT-IR, $^{1}H-NMR,\;^{19}F-NMR$, and Mass spectroscopy. As the content of chlorosulfonic acid increased, the SD, IEC, water uptake, and ion conductivity of the sulfonated polymer membranes increased. The sulfonated polymer 4 showed higher values of ion conductivity than the Nafion-$115^{\circledR}$ in a wide range of temperatures ($25{\sim}80^{\circ}C$).
Keywords
fluorene; fluorinated polymer; sulfonated polymer electrolyte membrane;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. Glipa, M. E. Haddad, D. J. Jones, and J. Roziere, 'Synthesis and characterisation of sulfonated polybenzimidazole: a highly conducting proton exchange polymer', Solid State Ionics, 97, 323 (1997)   DOI
2 Q. G. Peter, N. Pintauro, H. Tang, and S. O'Connor, 'Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes', J. Membr. Sci., 154, 175 (1999)   DOI   ScienceOn
3 W. Essafi, G. Gebel, and R. Mercier, 'Sulfonated polyimide ionomers: A structural study', Macromolecules, 37, 1431 (2004)   DOI   ScienceOn
4 R. Souzy and B. Ameduri, 'Functional fluoropolymers for fuel cell membranes', Prog. Polym. Sci., 30, 644 (2005)   DOI   ScienceOn
5 M. C. Yoo, B. J. Chang, J. H. Kim, S. B. Lee, and Y. T. Lee, 'Sulfonated perfluorocyclobutyl biphenylene polymer electrolyte membranes for fuel cells', Membrane J., 15, 355 (2005)
6 D. A. Babb, B. R. Ezzell, K. S. Clement, W. F. Richey, and A. P. Kennedy, 'Perfluorocyclobutane aromatic ether polymers', J. Polym. Sci., Part A: Polym. Chem., 31, 3465 (1993)   DOI   ScienceOn
7 A. P. Kennedy, D. A. Babb, J. N. Bremmer, and A. J. Pasztor Jr, 'Perfluorocyclobutane aromatic ether polymers. II. thermal/oxidative stability and decomposition of a thermoset polymer', J. Polym. Sci., Part A: Polym. Chem., 33, 1859 (1995)   DOI   ScienceOn
8 C. Lee, S. Sundar, J. Kwon, and H. S. Han, 'Structure-property correlations of sulfonated polyimides. II. Effect of bridging groups on membrane properties', J. Polym. Sci., Part A: Polym. Chem., 42, 3621 (2004)   DOI   ScienceOn
9 R. Y. M. Huang, P. Shao, C. M. Bums, and X. Feng, 'Sulfonation of poly(ether ether ketone) (PEEK): Kinetic study and characterization', J. Appl. Polym. Sci., 82, 2651 (2001)   DOI   ScienceOn
10 T. A. Zawodzinski, J. Davey, J. Valerio, and S. Gottesfeld, 'The water content dependence of electroosmotic drag in proton-conducting polymer electrolytes', Electrochim. Acta, 40, 297 (1995)   DOI   ScienceOn
11 O. Savadogo, 'Emerging membrane for electrochemical systems: (I) solid polymer electrolyte membranes for fuel cell systems', J. New. Mat. Electrochem. Systems, 1, 47 (1998)
12 Q. Pei and Y. Yang, 'Efficient photoluminescence and electroluminescence from a soluble polyfluorene', J. Am. Chem. Soc., 118, 7416 (1996)   DOI   ScienceOn
13 S. Wong, H. Ma, A. K. Y. Jen, R. Barto, and C. W. Frank, 'High fluorinated fluorovinyl aryl ether monomers and perfluorocyclobutane aromatic ether polymers for optical waveguide applications', Macromolecules, 36, 8001 (2003)   DOI   ScienceOn
14 V. Saarinen, T. Kallio, M. Paronen, P. Tikkanen, E. Rauhala, and K. Kontturi, 'New ETFE-based membrane for direct methanol fuel cell', Electrochim. Acta, 50, 3453 (2005)   DOI   ScienceOn
15 K. D. Kreuer, 'On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells', J. Membr. Sci., 185, 29 (2001)   DOI   ScienceOn
16 C. H. Lee, Y. T. Hong, J. H. Lee, H. B. Park, D. W. Han, and Y. M. Lee, 'Approaches and recent development of polymer electrolyte membrane (PEM) for fuel cells', Polym. Sci. Tech., 15, 578 (2004)
17 D. W. Smith Jr, D. A. Babb, H. V. Shah, A. Hoeglund, R. Traiphol, D. Perahia, H. W. Boone, C. Langhoff, and M. Radler, 'Perfluorocyclobutane (PFCB) polyaryl ethers: versatile coatings materials', J. Fluorine Chem., 104, 109 (2000)   DOI   ScienceOn
18 I. Rico and C. Wakselman, 'Condensation of 1,2-dibromotetrafluoroethane with various potassium thiophenoxides and phenoxides', J. Fluorine Chem., 20, 759 (1982)   DOI   ScienceOn
19 H. Kameshima, N. Nemoto, and T. Endo, 'Synthesis and properties of fluorene-based fluorinated polymers', J. Polym. Sci., Part A: Polym. Chem., 39, 3143 (2001)   DOI   ScienceOn
20 X. Guo, J. Fang, T. Watari, K. Tanaka, H. Kita, and K. I. Okamoto, 'Novel sulfonated polyimides as polye1ectro1ytes for fuel cell application. 2. synthesis and proton conductivity of polyimides from 9,9-Bis(4-aminophenyl)fluorene-2,7-disulfonic acid', Macromolecules, 35, 6707 (2002)   DOI   ScienceOn
21 O. Savadogo, 'Emerging membranes for electrochemical systems partII, High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications', J. Power Sources, 127, 135 (2004)
22 K. Miyatake, Y. Chikashige, and M. Watanabe, 'Novel sulfonated poly(arylene ether): A proton conductive polymer electrolyte designed for fuel cells', Macromolecules, 36, 9691 (2003)   DOI   ScienceOn
23 C. Lee, S. Sundar, J. Kwon, and H. S. Han, 'Structure-property correlations of sulfonated polyimides. I. Effect of bridging groups on membrane properties', J. Polym. Sci., Part A: Polym. Chem., 42, 3612 (2004)   DOI   ScienceOn
24 W. S. Choi and F. W. Harris, 'Synthesis and polymerization of trifluorovinylether-terminated imide oligomers. I', Polymer, 41, 6213 (2000)   DOI   ScienceOn
25 J. Ghim, D. S Lee, B. G. Shin, D. Yak, D. K. Yi, M. J Kim, H. S. Shim, J. J. Kim, and D. Y. Kim, 'Optical properties of perfluorocyclobutane aryl ether polymers for polymer photonic devices', Macromolecules, 37, 5724 (2004)   DOI   ScienceOn
26 M. Rikukawa, 'Proton-conducting polymer electrolyte membranes based on hydrocarbon polymer', Prog. Polym. Sci., 25, 1463 (2000)   DOI   ScienceOn
27 X. Shang, S. Tian, L. Kong, and Yuezhong Meng, 'Synthesis and characterization of sulfonated fluorene-containing poly(arylene ether ketone) for proton exchange membrane', J. Membr. Sci., 266, 94 (2005)   DOI
28 D. A. Babb, 'Polymers from the thermal $(2{\Pi}+2{\Pi})$ cyclodimerization of fluorinated olefins', Plenum Press, New York, 25 (1999)
29 S. Wong, H. M.a, Alex K. Y. Jen, Ri. Barto, and C. W. Frank, 'Perfluorocyclobutane-based polyester (arylene ether)s for applications in integrated optics', Macromolecules, 37, 5578 (2004)   DOI   ScienceOn