• Title/Summary/Keyword: NaCl Concentration

Search Result 1,591, Processing Time 0.027 seconds

Effects of NaCl Concentration and Solution Temperature on the Galvanic Corrosion between CFRP and AA7075T6

  • Hur, S.Y.;Kim, K.T.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.75-81
    • /
    • 2020
  • To reduce structural weight, light metals, including aluminum and magnesium alloys, have been widely used in various industries such as aircraft, transportation and automobiles. Recently, composite materials such as Carbon Fiber Reinforced Plastics (CFRP) and Graphite Epoxy Composite Material (GECM) have also been applied. However, aluminum and its alloys suffer corrosion from various factors, which include aggressive ions, pH, solution temperature and galvanic contact by potential difference. Moreover, carbon fiber in CFRP and GECM is a very efficient cathode, and very noble in the galvanic series. Galvanic contact between carbon fiber composites and metals in electrolytes such as rain or seawater, is highly undesirable. Notwithstanding the potentially dangerous effects of chloride and temperature, there is little research on galvanic corrosion according to chloride concentration and temperature. This work focused on the effects of chloride concentration and solution temperature on AA7075T6. The increased galvanic corrosion between CRFP and AA7075T6 was evaluated by electrochemical experiments, and these effects were elucidated.

Turbidity Treatment of TiO2 Wastewater by Electrocoagulation/flotation Process (전기응집/부상 공정을 이용한 TiO2 폐수의 탁도 제거)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.19 no.1
    • /
    • pp.89-96
    • /
    • 2010
  • The separation of $TiO_2$ wastewater carried out by an electrocoagulation/flotation process, which had various operating parameters. The effect of electrode material (aluminum and four dimensionally stable electrode), applied current (0.07~0.5 A), electrolyte concentration (0~1 g/L), solution pH (3~11), initial turbidity (1000~20000 NTU) and suspended solid concentration (5000~25000 mg/L) were evaluated. Turbidity removal efficiency of the soluble anode (aluminum), which could produce metal ions, was higher than that of the dimensionally stable electrode. Considering operation time, turbidity removal and electric power, optimum current was 0.19 A. The more NaCl dosage was high, the less electric power was required. However, optimum NaCl concentration was 0.125 g/L considered removal efficiency, operation time and cost. Initial $TiO_2$ concentration did not affected turbidity removal on the electrocoagulation/flotation operation. The electrocoagulation/flotation process was proved to be a very effective separation method in the removal of $TiO_2$ from wastewater.

Characterization of Salt Tolerant Rice Mutant Lines Derived from Azetidine-2-Carboxylic Acid Resistant Cell Lines Induced by Gamma Ray Irradiation (AZCA 저항성 돌연변이 세포주로부터 선발 육성만 내염성 벼 돌연변이 계통의 특성 검정)

  • Song, Jae-Young;Kim, Dong-Sub;Lee, Geung-Joo;Lee, In-Sok;Kang, Kwon-Kyoo;Yun, Song-Joong;Kang, Si-Yong
    • Journal of Plant Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.61-68
    • /
    • 2007
  • To develop rice (Oryza sativa L.) cultivars to be planted on salt-affected sites, cell lines with enhanced proline content and resistance to growth inhibition by Azetidine-2-carboxylic acid (AZCA), a proline analogue, were screened out among calli irradiated with gamma ray of 50, 70, 90, and 120 Gy. The calli had been derived from embryo culture of the cultivar Donganbyeo. Selected AZCA resistant lines that had high proline accumulation were used as sources for selection of NaCl resistant lines. To determine an optimum concentration for selection of NaCl resistant lines, Donganbyeo seeds were initially cultured on the media containing various NaCl concentrations (0 to 2.5%) for 40 days, and 1.5% NaCl concentration was determined as the optimum concentration. One hundred sixteen salt-tolerant (ST) lines were selected from bulked 20,000 seeds of the AZCA resistant $M_{3}$ seeds in the medium containing 1.5% NaCl. The putative 33 lines ($M_{4}$ generation) considered with salt-tolerance were further analyzed for salt tolerance, amino acid and ion contents, and expression patterns of the salt tolerance-related genes. Out of the 33 lines, 7 lines were confirmed to have superior salt tolerance. Based on growth comparison of the entries, the selected mutant lines exhibited greater shoot length with average 1.5 times, root length with 1.3 times, root numbers with 1.1 times, and fresh weight with 1.5 times than control. Proline contents were increased maximum 20%, 100% and 20% in the leaf, seed and callus, respectively, of the selected lines. Compared to control, amino acid contents of the mutants were 24 to 29%, 49 to 143%, 32 to 60% higher in the leaf, seed and callus, respectively. The ratio of $Na^{+}/K^{+}$ for most of the ST-lines were lower than that of control, ranging from 1.0 to 3.8 for the leaf and 11.5 to 28.5 for the root, while the control had 3.5 and 32.9 in the leaf and root, respectively. The transcription patterns for the P5CS and NHXI genes observed by RT-PCR analysis indicated that these genes were actively expressed under salt stress. The selected mutants will be useful for the development of rice cultivar resistant to salt stress.

Effects of Salinity on Leaf Growth and Photosynthesis in Rice (염처리가 수도잎의 신장 및 광합성능에 미치는 영향)

  • Lee, Kang-Sae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.1
    • /
    • pp.22-33
    • /
    • 1991
  • The studies aimed to distinguish between initial (ionic or osmotic) effects of salinisation on growth and the longer-term consequences of excessive salt accumulation. Tall and dwarf varieties of rice were used to provide different growth rates. There was no significant effect upon the day-to-day pattern of growth, upon the ultimate length of leaves that were developing at the time of, or shortly after, salinisation with 50 mM NaCl. Leaves that developed after prolonged exposure of the plants to salinity were shorter. Addition of NaCl, KCl or mannitol to the root medium brought about a cessation of leaf elongation within one minute. Growth at a reduced rate restarted abruptly after a lag period that depended upon the external concentration. Elongation rate recovered to its original value within 24 hours after exposure to 50 mM NaCl, though not at higher concentrations. Addition of NaCl at concentrations up to 100 mM elicited no short-term effect upon photsynthetic gas exchange. No change in turgor pressure was detectable in the growing zone with the resolution of the miniature pressure probe used (about 70 kPa). It is concluded that the initial growth reduction in rice caused by salinisation is due to a limitation of water supply. A clear distinction is made between the initial effects of salt which are recoverable, and the long-term effects which result from the accumulation of salt within expanded leaves.

  • PDF

Effect of Exogenous ATP and ionic Concentration on the Activity of Contractile Vacuoles in Amoeba proteus (배양액의 ATP첨가 및 이온 농도에 따른 Amoeba proteus 수축포의 배출작용)

  • 최범선;주윤수안태인
    • The Korean Journal of Zoology
    • /
    • v.34 no.4
    • /
    • pp.452-459
    • /
    • 1991
  • 담수산 대형 아메바인 각moeba proteus의 위상차 현미경 관찰 및 사진 분석을 통하여 수축포의 배출활동을 조사하f:다. Chalkley's 무기 염류 배양액에 첨가한 0. 1 mM ATP(disodium salt)에 의해 수축포의 배출속도는 270%로 증가하f:으며, 이 ATP의 효과는 Na+ 이온농도가 0.46mM 이상일 때 유효하였다. 실험용액의 NaGl 농도를 10 mM까지 증가시켰을 때 배출작용은 230%에 이르기까지 완만한 직선적 증가를 보였으며, 0.1 mM ATP를 첨가했을 때는 소폭의 NaCl농도 증가(0.50 mM)에 대하여 급격한 상승을 보였다. 이 배출 촉진은 Na+이온에 대해서 선별적으로 이루어졌으며 K+이온으로는 대체될 수 없었다. 배출속도는 Cac12를 제외한 Chalkley's 액에 50 $\mu$ M EDTA(disodium)를 첨가하였을 때에는 2900ye로 증가하였으며 , Caclf 농도가 증가됨에 따라 현격한 감소를 보였다. Chalkley's용액의 Cac12, NaCl을 함께 제외한 경우 배출속도는 대조군 수준에 미달된 데 비하여 0.2 mM Cac12, 10 mM NaCl첨가시에는 대조군의 180%였다. 아메바 수축포의 배출작용이 Na+이온 배출기구로 보고(Pottier efaf., 1987) 이들 결과를 종합해 볼때 아메바의 세포막에는 Na+ 이온의 투과수단으로 칼슘제거에 의해서 촉진확산되는 것과 Na+이온 농도증가에 따른 단순확산이 있을 것으로 사료된다.

  • PDF

$Na^{+}$-dependent NADH:quinone Oxidoreductase in the Respiratory Chain of the Marine Bacterium Marinomonas vaga

  • Kim, Young-Jae;Park, Yong-Ha
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.391-396
    • /
    • 1996
  • The Gram-negative marine bacterium Marinomonas vaga, which requires 0.5 M NaCl concentration for optimal growth, is slightly halophilic. The growth of M vaga was highly resistant to the proton conductor, carbonyl cyanide m-chlorophenylhydrazone (CCCP) under alkaline pH conditions (pH 8.5) but very sensitive to CCCP under acidic pH conditions (pH 6.5). These results suggest that the respiratory chain-linked NADH oxidase system of M. vaga may lead to generation of a $Na^{+}$ electrochemical gradient. In order to examine the existence of $Na^{+}$-stimulated NADH oxidase in M. vaga, membrane fractions were prepared by the osmotic lysis method. The membrane-bound NADH oxidase oxidized both NADH and deamino-NADH as substrates and required $Na^{+}$ for maximum activity. The maximum activity of NADH oxidase was obtained at about pH 8.5 in the presence of 0.2 M NaCl. The site of $Na^{+}$-dependent activation in the NADH oxidase system was at the NADH:quinone oxidoreductase segment. The NADH oxidase and NADH:quinone oxidoreductase were very sensitive to the respiratory chain inhibitor, 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) in the presence of 0.2 M NaCl but highly resistant to another respiratory inhibitor, rotenone. Based on these findings, we conclude that M. vaga possesses the $Na^{+}$-dependent NADH:quinone oxidoreductase that may function as an electrogenic $Na^{+}$ pump.

  • PDF

Characteristics and Localization of Lipoxygenase Activity in Cucumber (Cucumis sativus) Fruit (피클용 오이 (Cucumis sativus)에 함유된 Lipoxygenase 효소활성의 변화와 효소의 분포 특성)

  • Jang, Mi-Jin;Cho, Il-Young;Lee, Si-Kyung
    • Applied Biological Chemistry
    • /
    • v.38 no.5
    • /
    • pp.414-421
    • /
    • 1995
  • In order to establish informations important to the measurement of lipoxygenase (LOX) activity, providing conditions most favorable for its action and determining factors that inhibit activity, the influence of extraction buffer, substrate, pH, storage, temperature, NaCl, $CaCl_2$, other cations and antioxidants on LOX activity, and localization of LOX in cucumber tissues were carried out. The most favored substrate for LOX was linolenic acid followed by linoleic and arachidonic acids. LOX activity in both peel and mesocarp tissue extracts was maximum at pH 5.5 and relatively stable at $40^{\circ}C\;and\;50^{\circ}C$ temperature. The condition of 0.2 M NaCl with pH 5.0 was observed to provide optimum LOX stability. The enzyme activity was reduced by addition of cations, $Mn^{2+},\;Cu^{2+}\;or\; Al^{3+}$, except $Ca^{2+}$ which stimulated activity of LOX. Butylated hydroxy anisole (BHA) and propyl gallate decreased LOX activity with increasing concentration. Cucumber peel had higher activity than other tissues, locule or mesocarp, of cucumber.

  • PDF

Antihypertensive effect of Ganjang (traditional Korean soy sauce) on Sprague-Dawley Rats

  • Mun, Eun-Gyung;Sohn, Hee-Sook;Kim, Mi-Sun;Cha, Youn-Soo
    • Nutrition Research and Practice
    • /
    • v.11 no.5
    • /
    • pp.388-395
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Although Korean fermented foods contain large amounts of salt, which is known to exacerbate health problems, these foods still have beneficial effects such as anti-hypertension, anti-cancer, and anti-colitis properties. We hypothesized that ganjang may have different effects on blood pressure compared to same concentrations of salt. MATERIALS/METHODS: Sprague-Dawley rats were divided into control (CT), NaCl (NC), and ganjang (GJ) groups and orally administered with 8% NaCl concentration for 9 weeks. The systolic blood pressure (SBP), serum chemistry, $Na^+$ and $K^+$ concentrations and renal gene expressions were measured. RESULTS: The SBP was significantly increased in the NC group compared to the GJ and CT groups. In addition, the $Na^+$ concentration in urine was higher in the GJ and NC groups than the CT group, but the urine volume was increased in the GJ group compared to the other groups. The serum renin levels were decreased in the GJ group compared to the CT group, while the serum aldosterone level was decreased in the GJ group relative to the NC group. The mRNA expression of the renin, angiotensin II type I receptor, and mineralocorticoid receptor were significantly lower in the GJ group compared to other groups. Furthermore, GJ group showed the lowest levels of genes for $Na^+$ transporter in kidney cortex such as $Na^+/K^+$ $ATPase{\alpha}1$ ($NKA{\alpha}1$), $Na^+/H^+$ exchanger 3 (NHE3), $Na^+/HCO_3{^-}$ co-exchanger (NBC), and carbonic anhydrases II (CAII). CONCLUSIONS: The decreased SBP in the GJ could be due to decreased renin and aldosterone levels in serum and increased urinary volume and excretion of $Na^+$ with its transporter gene alteration. Therefore, ganjang may have antihypertensive effect despite its high contents of salt.

Production of Bio-ethanol from Agar using Saccharomyces cerevisiae (Saccharomyces cerevisiae 에 의한 Agar로부터 바이오 에탄올 생산)

  • Lee, Sung-Mok;Yu, Byung Jo;Kim, Young Min;Choi, Soo-Jeong;Ha, Jong-Myung;Lee, Jae-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.290-295
    • /
    • 2009
  • Red-algae agar, consisting of D-galactose and 3, 6-anhydro-L-galactose, is usable for bio-ethanol production if hydrolyzed to monomer unit. The objective of this study is to produce bio-ethanol from agar using the heat and acid-treatment. Bio-ethanol was produced by Saccharomyces cerevisiae KCCM1129 strains using agar-pretreatment. The optimal condition for reducing sugar conversion by agar was found to be 15 min reaction at a HCl concentration of 0.1 N and $120^{\circ}C$. The optimum concentration for maximum cell growth was 0.1 N NaCl (17.88 g/L). Over 0.1 N NaCl, the cell growth decreased to 6.78~10.76 g/L. At 16% agar concentration, the ethanol production obtained by optimum pretreatment was found to be 10.16 g/L.

Prediction of Water Activity for Gelatinized Model Foods (모형식품의 수분활성도 예측)

  • Jung, Seung-Hyeon;Chang, Kyu-Seob;Park, Young-Deok
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.94-97
    • /
    • 1993
  • This study was to predict water activity of gelatinized model foods containing moisture, protein and starch with different concentration of humectants such as sodium chlorife and sucrose. The water activity of each samples were determinded by electrical hygrometry. The degree of lowering water activity in model foods with humectant solutions was following order as NaCl>sucrose. Model food $P_2S_1$ was predominant in depression of water activity by humectants than other model foods. The multiple regression equations between water activity and different humectants concentration, compositions and solution ratio of model foods were obtained and $R^2$ values were higher than 0.91.

  • PDF