Browse > Article
http://dx.doi.org/10.14773/cst.2020.19.2.75

Effects of NaCl Concentration and Solution Temperature on the Galvanic Corrosion between CFRP and AA7075T6  

Hur, S.Y. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University)
Kim, K.T. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University)
Yoo, Y.R. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University)
Kim, Y.S. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University)
Publication Information
Corrosion Science and Technology / v.19, no.2, 2020 , pp. 75-81 More about this Journal
Abstract
To reduce structural weight, light metals, including aluminum and magnesium alloys, have been widely used in various industries such as aircraft, transportation and automobiles. Recently, composite materials such as Carbon Fiber Reinforced Plastics (CFRP) and Graphite Epoxy Composite Material (GECM) have also been applied. However, aluminum and its alloys suffer corrosion from various factors, which include aggressive ions, pH, solution temperature and galvanic contact by potential difference. Moreover, carbon fiber in CFRP and GECM is a very efficient cathode, and very noble in the galvanic series. Galvanic contact between carbon fiber composites and metals in electrolytes such as rain or seawater, is highly undesirable. Notwithstanding the potentially dangerous effects of chloride and temperature, there is little research on galvanic corrosion according to chloride concentration and temperature. This work focused on the effects of chloride concentration and solution temperature on AA7075T6. The increased galvanic corrosion between CRFP and AA7075T6 was evaluated by electrochemical experiments, and these effects were elucidated.
Keywords
CFRP; AA7075; Galvanic Corrosion; NaCl Concentration; Solution Temperature;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 A. A. Younis, M. M. B. El-sabbah, and R. Holz, J. Solid State Electrochem., 16, 1033 (2012). https://doi.org/10.1007/s10008-011-1476-7   DOI
2 B. Zaid, D. Saidi, A. Benzaid, and S. Hadji, Corros. Sci., 50, 1841 (2008). https://doi.org/10.1016/j.corsci.2008.03.006   DOI
3 Y. Wang, G. Cheng, W. Wu, Q. Qiao, Y. Li, and X. Li, Appl. Surf. Sci., 349, 746 (2015). https://doi.org/10.1016/j.apsusc.2015.05.053   DOI
4 Z. S. Smialowska, Corros. Sci., 41, 1743 (1999). https://doi.org/10.1016/S0010-938X(99)00012-8   DOI
5 I. W. Huang, B. L. Hurley, F. Yang, and R. G. Buchheit, Electrochim. Acta, 199, 242, (2016). https://doi.org/10.1016/j.electacta.2016.03.125   DOI
6 H. Ezuber, A. E. Houd, and F. E. Shawesh, Mater. Design, 29, 801 (2008). https://doi.org/10.1016/j.matdes.2007.01.021   DOI
7 G. S. Frankel, J. Electrochem. Soc., 145, 2186 (1998). https://doi.org/10.1149/1.1838615   DOI
8 Y. R. Yoo, Y. I. Son, G. T. Shim, Y. H. Kwon, and Y. S. Kim, Corros. Sci. Tech., 8, 27 (2009). http://www.j-cst.org/main/abstract_view.htm?scode=C&code=C00080100027&vol=8&no=1&type=aissue
9 Y. S. Kim, H. K. Lim, Y. I. Sohn, Y. R. Yoo, and H. Y. Chang, Corros. Sci. Tech., 9, 39(2010). http://www.j-cst.org/main/abstract_view.htm?scode=C&code=C00090100039&vol=9&no=1&type=aissue   DOI
10 Y. R. Yoo, Y. I. Son, G. T. Shim, Y. H. Kwon, and Y. S. Kim, Korean J. Met. Mater., 48, 514 (2010). https://doi.org/10.3365/KJMM.2010.48.06.514   DOI
11 Z. Peng and X. Nie, Surf. Coat. Technol., 215, 85 (2013). https://doi.org/10.1016/j.surfcoat.2012.08.098   DOI
12 H. Jiang, Y. Cong, X. Zhang, G. Li, and J. Cui, Mater. Design, 142, 297 (2018). https://doi.org/10.1016/j.matdes.2018.01.047   DOI
13 E. Hakansson, J. Hoffman, P. Predecki, and M. Kumosa, Corros. Sci., 114, 10 (2017). https://doi.org/10.1016/j.corsci.2016.10.011   DOI
14 M. Mandel and L. Kruger, Mater. Sci. Eng. Technology (Materialwiss. Werkstofftech.), 4, 43 (2012). https://doi.org/10.1002/mawe.201200945
15 S. Palani, T. Hack, J. Deconinck, and H. Lohner, Corros. Sci., 78, 89 (2014). https://doi.org/10.1016/j.corsci.2013.09.003   DOI
16 Z. Liu, M. Curioni, P. Jamshidi, A. Walker, P. Prengnell, G. E. Thompson, and P. Skeldon, Appl. Surf. Sci., 314, 233 (2014). https://doi.org/10.1016/j.apsusc.2014.06.072   DOI
17 S. Y. Hur, K. T. Kim, and Y. S. Kim, Corros. Sci. Tech., 18, 129 (2019). http://www.j-cst.org/main/abstract_view.htm?scode=C&code=C00180400129&vol=18&no=4&type=aissue   DOI
18 ASTM B221, Standard specification for aluminum and aluminum-alloy extruded bars, rods, wire, profiles, and tubes, ASTM (2012).
19 M. G. Fontana, Corrosion Engineering, 3rd ed., p. 462, McGraw-Hill, Singapore (1987).