DOI QR코드

DOI QR Code

Effects of NaCl Concentration and Solution Temperature on the Galvanic Corrosion between CFRP and AA7075T6

  • Hur, S.Y. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University) ;
  • Kim, K.T. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University) ;
  • Yoo, Y.R. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University) ;
  • Kim, Y.S. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University)
  • Received : 2020.04.14
  • Accepted : 2020.04.23
  • Published : 2020.04.29

Abstract

To reduce structural weight, light metals, including aluminum and magnesium alloys, have been widely used in various industries such as aircraft, transportation and automobiles. Recently, composite materials such as Carbon Fiber Reinforced Plastics (CFRP) and Graphite Epoxy Composite Material (GECM) have also been applied. However, aluminum and its alloys suffer corrosion from various factors, which include aggressive ions, pH, solution temperature and galvanic contact by potential difference. Moreover, carbon fiber in CFRP and GECM is a very efficient cathode, and very noble in the galvanic series. Galvanic contact between carbon fiber composites and metals in electrolytes such as rain or seawater, is highly undesirable. Notwithstanding the potentially dangerous effects of chloride and temperature, there is little research on galvanic corrosion according to chloride concentration and temperature. This work focused on the effects of chloride concentration and solution temperature on AA7075T6. The increased galvanic corrosion between CRFP and AA7075T6 was evaluated by electrochemical experiments, and these effects were elucidated.

Keywords

References

  1. A. A. Younis, M. M. B. El-sabbah, and R. Holz, J. Solid State Electrochem., 16, 1033 (2012). https://doi.org/10.1007/s10008-011-1476-7
  2. B. Zaid, D. Saidi, A. Benzaid, and S. Hadji, Corros. Sci., 50, 1841 (2008). https://doi.org/10.1016/j.corsci.2008.03.006
  3. Y. Wang, G. Cheng, W. Wu, Q. Qiao, Y. Li, and X. Li, Appl. Surf. Sci., 349, 746 (2015). https://doi.org/10.1016/j.apsusc.2015.05.053
  4. Z. S. Smialowska, Corros. Sci., 41, 1743 (1999). https://doi.org/10.1016/S0010-938X(99)00012-8
  5. I. W. Huang, B. L. Hurley, F. Yang, and R. G. Buchheit, Electrochim. Acta, 199, 242, (2016). https://doi.org/10.1016/j.electacta.2016.03.125
  6. H. Ezuber, A. E. Houd, and F. E. Shawesh, Mater. Design, 29, 801 (2008). https://doi.org/10.1016/j.matdes.2007.01.021
  7. G. S. Frankel, J. Electrochem. Soc., 145, 2186 (1998). https://doi.org/10.1149/1.1838615
  8. Y. R. Yoo, Y. I. Son, G. T. Shim, Y. H. Kwon, and Y. S. Kim, Corros. Sci. Tech., 8, 27 (2009). http://www.j-cst.org/main/abstract_view.htm?scode=C&code=C00080100027&vol=8&no=1&type=aissue
  9. Y. S. Kim, H. K. Lim, Y. I. Sohn, Y. R. Yoo, and H. Y. Chang, Corros. Sci. Tech., 9, 39(2010). http://www.j-cst.org/main/abstract_view.htm?scode=C&code=C00090100039&vol=9&no=1&type=aissue https://doi.org/10.14773/cst.2010.9.1.039
  10. Y. R. Yoo, Y. I. Son, G. T. Shim, Y. H. Kwon, and Y. S. Kim, Korean J. Met. Mater., 48, 514 (2010). https://doi.org/10.3365/KJMM.2010.48.06.514
  11. Z. Peng and X. Nie, Surf. Coat. Technol., 215, 85 (2013). https://doi.org/10.1016/j.surfcoat.2012.08.098
  12. H. Jiang, Y. Cong, X. Zhang, G. Li, and J. Cui, Mater. Design, 142, 297 (2018). https://doi.org/10.1016/j.matdes.2018.01.047
  13. E. Hakansson, J. Hoffman, P. Predecki, and M. Kumosa, Corros. Sci., 114, 10 (2017). https://doi.org/10.1016/j.corsci.2016.10.011
  14. M. Mandel and L. Kruger, Mater. Sci. Eng. Technology (Materialwiss. Werkstofftech.), 4, 43 (2012). https://doi.org/10.1002/mawe.201200945
  15. S. Palani, T. Hack, J. Deconinck, and H. Lohner, Corros. Sci., 78, 89 (2014). https://doi.org/10.1016/j.corsci.2013.09.003
  16. Z. Liu, M. Curioni, P. Jamshidi, A. Walker, P. Prengnell, G. E. Thompson, and P. Skeldon, Appl. Surf. Sci., 314, 233 (2014). https://doi.org/10.1016/j.apsusc.2014.06.072
  17. S. Y. Hur, K. T. Kim, and Y. S. Kim, Corros. Sci. Tech., 18, 129 (2019). http://www.j-cst.org/main/abstract_view.htm?scode=C&code=C00180400129&vol=18&no=4&type=aissue https://doi.org/10.14773/CST.2019.18.4.129
  18. ASTM B221, Standard specification for aluminum and aluminum-alloy extruded bars, rods, wire, profiles, and tubes, ASTM (2012).
  19. M. G. Fontana, Corrosion Engineering, 3rd ed., p. 462, McGraw-Hill, Singapore (1987).

Cited by

  1. Control of Galvanic Corrosion Between A516Gr.55 Steel and AA7075T6 Depending on NaCl Concentration and Solution Temperature vol.19, pp.6, 2020, https://doi.org/10.14773/cst.2020.19.6.281