Production of Bio-ethanol from Agar using Saccharomyces cerevisiae

Saccharomyces cerevisiae 에 의한 Agar로부터 바이오 에탄올 생산

  • Lee, Sung-Mok (Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Yu, Byung Jo (Bio & Health Group, Emerging Center, Samsung Advanced Institute of Technology) ;
  • Kim, Young Min (Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Choi, Soo-Jeong (Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Ha, Jong-Myung (Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Lee, Jae-Hwa (Department of Bioscience and Biotechnology, College of Engineering, Silla University)
  • 이성목 (신라대학교 공과대학 생명공학과) ;
  • 유병조 (삼성종합기술원) ;
  • 김영민 (신라대학교 공과대학 생명공학과) ;
  • 최수정 (신라대학교 공과대학 생명공학과) ;
  • 하종명 (신라대학교 공과대학 생명공학과) ;
  • 이재화 (신라대학교 공과대학 생명공학과)
  • Received : 2009.02.12
  • Accepted : 2009.03.11
  • Published : 2009.06.10

Abstract

Red-algae agar, consisting of D-galactose and 3, 6-anhydro-L-galactose, is usable for bio-ethanol production if hydrolyzed to monomer unit. The objective of this study is to produce bio-ethanol from agar using the heat and acid-treatment. Bio-ethanol was produced by Saccharomyces cerevisiae KCCM1129 strains using agar-pretreatment. The optimal condition for reducing sugar conversion by agar was found to be 15 min reaction at a HCl concentration of 0.1 N and $120^{\circ}C$. The optimum concentration for maximum cell growth was 0.1 N NaCl (17.88 g/L). Over 0.1 N NaCl, the cell growth decreased to 6.78~10.76 g/L. At 16% agar concentration, the ethanol production obtained by optimum pretreatment was found to be 10.16 g/L.

해조류 중에서도 홍조류의 agar는 D-galactose와 3,6-anhydro-L-galactose로 구성되어 있기 때문에 이를 분해하면 바이오 에탄올을 생산 할 수 있는 가능성이 높다. 본 연구에서는 열처리와 산 처리를 이용하여 agar를 당화하고 이를 통해 바이오 에탄올을 생산하고자 한다. 바이오 에탄올을 생산하기 위하여 전처리 된 agar에 Saccharomyces cerevisiae KCCM1129를 접종하여 발효하였다. Agar로부터 환원당 생성의 최적조건은 0.1 N HCl이었고, $120^{\circ}C$에서 15 min 반응하는 것으로 확인되었다. 발효균주 성장을 위한 최적 염 농도는 0.1 N NaCl로 17.88 g/L까지 성장하였으며, 0.1 N 이상의 농도에서 6.78~10.76 g/L로 성장이 감소했다. 그리고 agar 16% 농도에서 최적 전처리에 의한 에탄올 생산은 10.16 g/L이었다.

Keywords

References

  1. J.-I. Park, H.-C. Woo, and J.-H. Lee, Korean Chem. Eng. Res., 46, 833 (2008)
  2. N. E. Tolbert, Regulation of atmospheric CO2 and O2 by photosynthetic Carbon Metabolism, ed. J. Preiss, 8, Oxford University Press, Oxford (1994)
  3. A. Hirano, R. Ueda, S. Hirayama, and Y. Ogushi, Energy., 22, 137 (1997) https://doi.org/10.1016/S0360-5442(96)00123-5
  4. B. C. Saha and M. A. Cotta, Enzyme Microb. Technol., 41, 528 (2007) https://doi.org/10.1016/j.enzmictec.2007.04.006
  5. B. Hahn-Hagerdal, M. Galbe, M. F. Gorwa-Grauslund, G. Liden, and G. Zacchi, Trends Biotechnol., 24, 549 (2006) https://doi.org/10.1016/j.tibtech.2006.10.004
  6. J.-R. Do, Y.-J. Nam, J.-H. Park, and J.-H. Jo, J. Kor. Fish. Soc., 30, 428 (1997)
  7. H.-I. Kang, M.-S. Ko, H.-J. Kim, S.-W. Kim, and T.-J. Bae, J. Kor. Fish. Soc., 29, 716 (1996)
  8. J.-H. Kim, D.-S. Byun, J. S. Godber, J.-S. Choi, W.-C. Choi, and H.-R. Kim, Appl Microbiol. Biotechnol., 63, 553 (2004) https://doi.org/10.1007/s00253-003-1463-8
  9. G. Michel, P. Nyval-Collen, T. Barbeyron, M. Czjzek, and W. Helbert, Appl. Microbiol. Biotechnol., 77, 23 (2007) https://doi.org/10.1007/s00253-007-1163-x
  10. S. A. Lee, J. U. Kim, J. G. Jung, I. H. Kim, S. H. Lee, S. J. Kim, and J. H. Lee, Kor. J. Biotechnol. Bioeng., 21, 389 (2006)
  11. B. Hu, Q. Gong, Y. Wang, Y. Ma, J. Li, and W. Yu, Anaerobe., 12, 260 (2006) https://doi.org/10.1016/j.anaerobe.2006.07.005
  12. D. S. Joo, S. Y. Cho, and E. H. Lee, Kor. J. Biotechnol. Bioeng., 13, 378 (1998)
  13. Y. Sugano, I. Terada, M. Arita, M. Noma, and T. Matsumoto, Appl. Environ. Microbiol., 59, 1549 (1993)
  14. C. Y. Lii, C. H. Chen, A. I. Yeh, and V. M. F. Lai, Food Hydrocolloids., 13, 477 (1999) https://doi.org/10.1016/S0268-005X(99)00031-4
  15. D. S. Joo, O. S. Kim, S. Y. Cho, and C. H. Lee, J. Kor. Fish. Soc., 36, 6 (2003) https://doi.org/10.5657/kfas.2003.36.1.006
  16. A. Karlsson and S. K. Singh, Carbohydr. Polym., 38, 7 (1999) https://doi.org/10.1016/S0144-8617(98)00085-X
  17. D. S. Joo, H. M. Song, J. S. Lee, S. Y. Cho, and E. H. Lee, Kor. J. Biotechnol. Bioeng., 13, 320 (1998)
  18. J.-Y. Kong, S.-K. Bae, S.-H. Hwang, S.-D. Ha, H.-T. Kim, S.-K. Kim, and B.-J. Kim, Kor. J. Biotechnol. Bioeng., 11, 37 (1996)
  19. M.-K. Jang, O. H Lee, K. H. Yoo, D.-G. Lee, and S. H. Lee, J. life. Sci., 17, 1601 (2007)
  20. J.-Y. Kong, New Informations of Oligosaccharides, 359, Yelim media, Seoul (2007)
  21. H.-M. Chen, L. Zheng, and X.-J. Yan, Food Technol. Biotechnol., 43, 29 (2005)
  22. S.-K. Paik, H.-S. Yun, K.-H. Sa, I.-S. Kim, I.-K. Rhee, H.-D. Park, C.-B. Yu, and I. Jin, Kor. J. Microbiol. Biotechnol., 31, 63 (2003)
  23. S.-L. Kim, W.-J. Kim, S.-Y. Lee, and S. M. Byun, J. Kor. Agricultural Chemical Society., 27, 139 (1984)
  24. S. J. Horn, I. M. Aasen, and K. Ostgaard, J. Ind. Microbiol. Biotechnol., 25, 249 (2000) https://doi.org/10.1038/sj.jim.7000065