• Title/Summary/Keyword: NVH performance

Search Result 84, Processing Time 0.024 seconds

On the Evaluation of In-Vehicle Dynamic Characteristics and On-Road Dynamic Stability(Angle of Rotation) of Rearview Mirror (리어뷰 미러의 실차 동특성 및 주행시 동적 안정성(회전각)에 대한 평가)

  • Jung, Seung-Kyun;Lee, Keun-Soo;Kim, Jeung-Han
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.385-386
    • /
    • 2008
  • Dynamic stability of the vehicle rearview mirror is an important factor for the driver's visual perception (image blur) when driving down the road and regarded as one of the vehicle level N&V performance of visible component vibration. Several projects within GM identified a set of objective metrics and validation methods that can replace current existing subjective evaluation of mirror stability. This paper presents objective evaluation results for assessing dynamic stability (angle of rotation) of the vehicle rearview mirrors using both in-lab FRF measurements and on-road testing.

  • PDF

Experimental Study of Engine Mount Optimization to Improve NVH Quality (NVH 성능향상을 위한 엔진마운트 최적설계에 관한 실험적 연구)

  • 이준용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.330-337
    • /
    • 1996
  • The purpose of engine mount system is to reduce the noise and vibration caused by engine vibration, and to decouple the roll and bounce mode at idle. To reduce the noise and vibration level in a vehicle, it is important to make the design optimization of engine mount system that considered the moment of inertia and inclination of mount rubber. As a result, according to the definition of Torque Rool Axis (TRA), the vibration axis at idle must be on the TRA or very close to it. In this paper, we studied the effect of the design optimization of engine mount system. And we have a good NVH performance.

  • PDF

Development of the Vibration Analysis Model of Passenger Car (승용차의 진동해석모델 개발)

  • Kwon, Soon-Ki
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.291-298
    • /
    • 2011
  • According to the developments of automobile industry, the technology to enhance noise, vibration and harshness(NVH) performance has been studying in a point of view of ride comfort and quietness. Especially the use of computer aided engineering(CAE) simulation tools such as finite element(FE) analysis allows engineers to efficiently evaluate NVH performance. This paper presents the method to bulid FE models for full vehicle including engine, transmission. suspension and steering system, also to evaluate vibration performance of full vehicle. The full vehicle model, which is discussed, is correlated with the result of the frequency response measurement in the case of the car shake performance for high speed driving.

A Study on the Influence of Strut Insulator Aging on Vehicle Noise (스트러트 인슐레이터 열화가 차량 소음에 미치는 영향에 관한 연구)

  • Son, Seong-Hyun;Kang, Sung-Su;Kim, Gug-Yong;Park, Soon-Cheol
    • Elastomers and Composites
    • /
    • v.45 no.4
    • /
    • pp.291-297
    • /
    • 2010
  • Strut insulator in a vehicle is an important part to prevent noise and vibration which is created for driving on the road. Most of the viscoelastic-mounts are made of rubber and natural rubber is the key ingredient. These rubber products show well performance for the initial time, but they will degrade after they are exposed to a high temperature circumstance and a cyclic load. NVH performance and comfort in a vehicle were decreased by these degradation of the rubber. In this study, spring displacement in a vehicle was measured to make a profile in the simulation test performed with an acceleration sensor. In addition, acceleration level, rubber permanent deformation and hardness of the rubber were measured according to drive distance and vehicle model.

A Study on Durability Performance Estimation for Development of Chassis Corner Module (샤시코너모듈 개발을 위한 부품의 내구 성능 예측에 대한 연구)

  • Choi Sungjin;Park Jungwon;Jeon Kwangki;Yoo Youngmyun;Choi Gyoojae;Park Taewon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.159-166
    • /
    • 2006
  • Chassis system has a large influence on ride quality, stability and NVH performance of a car. To improve the performance and reduce cost, the development of chassis modular assemblies is emphasized. To develop chassis corner modules, it is necessary to predict the performance of full vehicle motion such as ride, handling performance, NVH characteristics and durability of modules. In this paper, full vehicle test is performed to acquire the road load data of chassis corner module of passenger car. 3-axis simulator modeling are carried out to simulate reaction force analysis and fatigue analysis of new developed modules. Also, real simulator tests to validate performance of new developed modules are performed. We had developed the accelerated durability test procedure of KATECH PG and it is used to test chassis corner modules at laboratory and simulate durability performance. All these results have been provided to module and parts company and make an important role to develop chassis corner modules.

Vehicle Test of Electromagnetic type Active Engine Mount (전자식 능동형 마운트 실차 성능평가)

  • Kim, Jeong-Hoon;Lee, Dong-Wook;Hong, Sung-Woo;Bae, Chul-Yong;Hong, Seung-Mo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.486-487
    • /
    • 2009
  • Recently active engine mounting system is developed for improvement of vehicle NVH Problem which is caused by development of high efficient powertrain and lightweight vehicle body. The aims in the development of active engine mounting system is performance confirmation of vehicle to apply active engine mount. In this paper, NVH test was done on test vehicle including active engine mount. And performance of active engine mount is evaluated by controlling active engine mount.

  • PDF

Vehicle Dynamic Analysis Using Virtual Proving Ground Approach

  • Min, Han-Ki;Park, Gi-Seob;Jung, Jong-An;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.958-965
    • /
    • 2003
  • Structural integrity of either a passenger car or a light truck is one of the basic requirements for a full vehicle engineering and development program. The results of the vehicle product performance are measured in terms of ride and handling, durability, noise/vibration/harshness (NVH), crashworthiness and occupant safety. The level of performance of a vehicle directly affects the marketability, profitability and, most importantly, the future of the automobile manufacturer In this study, we used the virtual proving ground (VPG) approach for obtaining the dynamic characteristics. The VPG approach uses a nonlinear dynamic finite element code (LS-DYNA3D) which expands the application boundary outside the classic linear static assumptions. The VPG approach also uses realistic boundary conditions of tire/road surface interactions. To verify the predicted dynamic results, a single lane change test has been performed. The prediction results were compared with the experimental results, and the feasibility of the integrated CAE analysis methodology was verified.

Spray Deadener Application for Reduction of Vehicle NVH (스프레이 제진재에 의한 승용차 소음진동 저감)

  • 이종규;허덕재;조영호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1150-1155
    • /
    • 2001
  • Vehicle Manufacturers use asphalt deadener sheets for their passenger cars to reduce noise and vibration from engine and road surface. Since their shapes are limited to a few variations, it is very difficult to reduce unnecessary weight by changing the shape of the deadeners. There is also damping performance limit in the asphalt sheets. Therefore, a high damping material should be implemented into the vehicle noise and vibration reduction activities to overcome the disadvantage of asphalt sheets. In this study, measurement of the damping loss factor and sound transmission loss were made to compare the properties and vehicle test and analysis was followed to evaluate the NVH performance of each deadener type in the vehicle.

  • PDF

Development of 6-DOF Simulator for Active Engine Mounting System (능동형 엔진 마운트 성능 평가를 위한 6축 시뮬레이터 구축)

  • Kim, Jeong-Hoon;Kim, Jae-San;Lee, Han-Dong;Park, Tae-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.520-525
    • /
    • 2011
  • As worldwide concern stands on global warming and greenhouse gases from internal combustion engine, the interests in technologies for a highly efficient powertrain has been increased. Concurrently the investigation to improve the deteriorated NVH, a by-product of energy efficient powertrain, is conducted seriously. The NVH performance of a new type of active engine mount that offers increased advantages over a passive hydraulic mount is examined using a newly developed 6-DOF simulator. The simulator is in the shape of Hexapod Stewart Platform adopting LEMA, a new type of actuator which is patented and commercialized by ACT Inc,, the world wide leader in the design, development, and manufacture of high performance linear electro-magnetic actuators for active vibration control. The target vibration signals of an aimed vehicle at four engine mounts are measured and simulated by 6-DOF simulator at the laboratory. The resulting NVH performances of the new active mounting system at a vehicle and on a simulator are examined and compared. Even though the active mount performance of lab test demonstrates less effective than the result of a real vehicle test, vibration reduction is identified through the simulator.

  • PDF

A Study on the Design Technology for Automobile Front Subframe Module (자동차 프런트 서브프레임 모듈 설계기술에 대한 연구)

  • Choe, Byeong-Ik;Kim, Wan-Du;Lee, Hak-Ju;Gang, Jae-Yun;Kim, Jeong-Yeop;U, Chang-Su;Han, Seung-U;Kim, Ju-Seong;Kim, Gi-Ju
    • 연구논문집
    • /
    • s.32
    • /
    • pp.85-94
    • /
    • 2002
  • Even in the world wide automobile companies where a few simple modules are put into practical use, the front subframe modules of which performances of durability, NVH and crash are significantly important are under planing. In this study, design technology for the automobile front subframe module, which consists of an engine, a transmission and steering parts, structural components (frame, upper arm, lower arm and brake etc.) and rubber components(engine mount, axle mount and rubber disc etc.), was developed. A FEM-based analytical approach was used to evaluate the multiaxial high cycle fatigue damage of the front subframe module. Strain-life fatigue database system and expert system for fatigue properties of welded materials were developed. Stiffness values of the various rubber bushes mounted on the front subframe were evaluated by experimental method and FEM. TWB(Tailor Welded Blank) technology was applied to forming the cross member of the front subframe. Performance evaluations in relation to NVH and crash were conducted by using CAE technologies.

  • PDF