• Title/Summary/Keyword: NURBS Surface representation NURBS

Search Result 12, Processing Time 0.025 seconds

Integration of Shell FEA with Geometric Modeling Based on NURBS Surface Representation (NURBS 곡면기반의 기하학적 모델링과 셀 유한요소해석의 연동)

  • Choi, Jin-Bok;Roh, Hee-Yuel;Cho, Maeng-Hyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.105-112
    • /
    • 2007
  • The linkage framework of geometric modeling based on NURBS(Non-Uniform Rational B-Spline) surface and shell finite analysis is developed in the present study. For this purpose, geometrically exact shell finite element is implemented. NURBS technology is employed to obtain the exact geometric quantities for the analysis. Especially, because NURBS is the most powerful and wide-spread method to represent general surfaces in the field of computer graphics and CAD(Computer Aided Design) industry, the direct computation of surface geometric quantities from the NURBS surface equation without approximation shows great potential for the integration between geometrically exact shell finite element and geometric modeling in the CAD systems. Some numerical examples are given to verify the performance and accuracy of the developed linkage framework. In additions, trimmed surfaces with some cutouts are considered for more practical applications.

The application of geometrically exact shell element to NURBS generated by NLib (기하학적으로 정확한 쉘 요소의 NLib에 의해 생성된 NURBS 곡면에의 적용)

  • Choi Jin-Bok;Oh Hee-Yuel;Cho Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.301-308
    • /
    • 2005
  • In this study, we implement a framework that directly links a general tensor-based shell finite element to NURBS geometric modeling. Generally, in CAD system the surfaces are represented by B-splines or non-uniform rational B-spline(NURBS) blending functions and control points. Here, NURBS blending functions are composed by two parameters defined in local region. A general tensor-based shell element also has a two-parameter representation in the surfaces, and all the computations of geometric quantities can be performed in local surface patch. Naturally, B-spline surface or NURBS function could be directly linked to the shell analysis routine. In our study, we use NLib(NURBS libraray) to generate NURBS for shell finite analysis. The NURBS can be easily generated by interpolating or approximating given set of data points through NLib.

  • PDF

On Constructing NURBS Surface Model from Scattered and Unorganized 3-D Range Data (정렬되지 않은 3차원 거리 데이터로부터의 NURBS 곡면 모델 생성 기법)

  • Park, In-Kyu;Yun, Il-Dong;Lee, Sang-Uk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.3
    • /
    • pp.17-30
    • /
    • 2000
  • In this paper, we propose an efficient algorithm to produce 3-D surface model from a set of range data, based on NURBS (Non-Uniform Rational B-Splines) surface fitting technique. It is assumed that the range data is initially unorganized and scattered 3-D points, while their connectivity is also unknown. The proposed algorithm consists of three steps: initial model approximation, hierarchical representation, and construction of the NURBS patch network. The mitral model is approximated by polyhedral and triangular model using K-means clustering technique Then, the initial model is represented by hierarchically decomposed tree structure. Based on this, $G^1$ continuous NURBS patch network is constructed efficiently. The computational complexity as well as the modeling error is much reduced by means of hierarchical decomposition and precise approximation of the NURBS control mesh Experimental results show that the initial model as well as the NURBS patch network are constructed automatically, while the modeling error is observed to be negligible.

  • PDF

The Linkage between Spline/NURBS Free Surface and Shell Finite Element Analysis (Spline/NURBS 자유곡면과 쉘 해석의 연동)

  • 노희열;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.303-310
    • /
    • 2001
  • We propose the framework which directly links shell finite element to the free form surface geometric modeling. For the development of a robust shell element, a first order shear deformable shell theory and partial mixed variational functional are provided. Bubble functions are included in the shape function of displacement to improve the performance of the developed element. The Spline/NURBS is used to generate the general free form of parameterized shell surfaces. The proposed shell finite element model linked with NURBS surface representation provides efficiency for design and analysis. Numerical examples are given in order to assess the accuracy of the performances of the proposed element.

  • PDF

Construction of NURBS Model for Preliminary High-Speed Monohull Design Based on Parametric Approach (파라메트릭 기법을 고속 단동선의 NURBS 모델링)

  • Nam Jong-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.3 s.70
    • /
    • pp.82-87
    • /
    • 2006
  • An approach to model a high-speed monohull vessel is introduced. The high-speed monohull form belonging to the category of multihull is drawing new attention, due to the rapidly growing trend of fast passenger ships and military purpose. Multihull forms are much thinner in their overall shape, compared to those of the conventional commercial vessels. Moreover, the parent hull forms are not readily obtainable when a new design is intended, which makes it hard to perform various technical calculations in terms of hull optimization, hydrodynamic computation, structural design, and so forth. In this paper, a parametric technique is used to design a high-speed hull form. To model a hull form, NURBS (Non Uniform Rational B-Spline) representation is used. The goal of research is to provide a fast and convenient tool to design an initial hull form with fewer parameters available in the early design stage. The technique employed in this paper will be applied to the design of multihull forms, such as catamaran, trimaran, and semi-swath.

The outline of a Link between Shell Analysis and Surface Modeling for Surface Structural Integrated Design (곡면 구조물 통합 설계를 위한 쉘 해석과 곡면 모델링의 연동 개요)

  • 노희열;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.295-302
    • /
    • 2001
  • In the present study, we propose the framework which directly links shell finite element to the surface geometric modeling. For the development of a robust shell element, partial mixed variational functional is provided. The NURBS is used to generate the general free form of parameterized shell surfaces. Employment of NURBS makes shell finite element handle the arbitrary geometry of the smooth shell surfaces. The proposed shell finite element model linked with NURBS surface representation provides efficiency for design and analysis and can be directly extended to surface shape optimization problems in future work.

  • PDF

Volumetric NURBS Representation of Multidimensional and Heterogeneous Objects: Modeling and Applications (VNURBS기반의 다차원 불균질 볼륨 객체의 표현: 모델링 및 응용)

  • Park S. K.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.5
    • /
    • pp.314-327
    • /
    • 2005
  • This paper describes the volumetric data modeling and analysis methods that employ volumetric NURBS or VNURBS that represents heterogeneous objects or fields in multidimensional space. For volumetric data modeling, we formulate the construction algorithms involving the scattered data approximation and the curvilinear grid data interpolation. And then the computational algorithms are presented for the geometric and mathematical analysis of the volume data set with the VNURBS model. Finally, we apply the modeling and analysis methods to various field applications including grid generation, flow visualization, implicit surface modeling, and image morphing. Those application examples verify the usefulness and extensibility of our VNUBRS representation in the context of volume modeling and analysis.

Image-Based Approach for Modeling 3D Shapes with Curved Surfaces (곡면을 포함하는 형상의 영상을 이용한 모델링)

  • Lee, Man-Hee;Park, In-Kyu
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.1
    • /
    • pp.38-48
    • /
    • 2007
  • In this paper, we propose an image-based method for modeling 3D objects with curved surfaces based on the NURBS (Non-Uniform Rational B-Splines) representation. Starting from a few calibrated images, the user specifies the corresponding curves by means of an interactive user interface. Then, the 3D curves are reconstructed using stereo reconstruction. In order to fit the curves easily using the interactive user interface, NURBS curves and surfaces are employed. The proposed surface modeling techniques include surface building methods such as bilinear surfaces, ruled surfaces, generalized cylinders, and surfaces of revolution. In addition to these methods, we also propose various advanced surface modeling techniques, including skinned surfaces, swept surfaces, and boundary patches. Based on these surface modeling techniques, it is possible to build various types of 3D shape models with textured curved surfaces without much effort. Also, it is possible to reconstruct more realistic surfaces by using proposed view-dependent texture acquisition algorithm. Constructed 3D shape model with curves and curved surfaces can be exported in VRML format, making it possible to be used in different 3D graphics softwares.

A Study on the Freeform Surface Generation Using Parametric Method (파라메트릭기법을 이용한 3차원 자유곡면 생성에 관한 연구)

  • 김태규;변문현
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.293-303
    • /
    • 1998
  • The objective of this study is to develop a PC level freeform surface modeling system which explicitly represents information of part geometry. Surface modeler uses nonuniform rational B-spline (NURBS) function with nonuniform knot vector for the flexible modeling work. The results of this study are as follows. 1) By implementation surface modeler through applying representation scheme proposed to represent free-form surface explicity, the technical foundation to develop free-from surface modeling system using parametric method. 2) Besides the role to model geometric shape of a surface, geometric modeler is developed to model arbitrary geometric shape. By doing this, the availability of the modeling system is improved. Geometric modeler can be utilized application fields such as collision test of tool and fixture, and tool path generation for NC machine tool.

  • PDF

Approximate Lofting by B-spline Curve Fitting Based on Energy Minimization (에너지 최소화에 근거한 B-spline curve fitting을 이용한 근사적 lofting 방법)

  • 박형준;김광수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.1
    • /
    • pp.32-42
    • /
    • 1999
  • Approximate lofting or skinning is one of practical surface modeling techniques well used in CAD and reverse engineering applications. Presented in this paper is a method for approximately lofting a given set of curves wihin a specified tolereance. It is based on refitting input curves simultaneously on a common knot vector and interpolating them to get a resultant NURBS surface. A concept of reducing the number of interior knots of the common knot vector is well adopted to acquire more compact representation for the resultant surface. Energy minimization is newly introduced in curve refitting process to stabilize the solution of the fitting problem and get more fair curve. The proposed approximate lofting provides more smooth surface models and realizes more efficient data reduction expecially when the parameterization and compatibility of input curves are not good enough. The method has been successfully implemented in a new CAD/CAM product VX Vision? of Varimetrix Corporation.

  • PDF