• Title/Summary/Keyword: NS4

Search Result 888, Processing Time 0.023 seconds

Pulse Shortening by a Kerr Cell in an Iodine Laser and the Amplification of a Shortened Pulse (Kerr cell을 이용한 옥소 레이저의 펄스폭 단축과 압축된 펄스의 증폭)

  • ;;;;M.R.Motchalov
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.26-32
    • /
    • 1995
  • A Kerr cell was utilized as an optical shutter to generate a shortened pulse and as an isolator between amplifiers in an iodine laser system. By rotating the polarization of incident laser pulse only during the timing window of high voltage applied to the Kerr cell, shortened pulses of 5 ns and 1 ns, corresponding to the difference in propagation time of two coaxial cables, were obtained. It was also noticed that more than one timing window of Kerr cell was produced with a long incident laser pulse from the oscillator. The measured transmittance of Kerr cell with respect to applied voltage was compared with the theoretical estimation using the electro-optic Kerr effect theory. Through the amplification of the shortened pulse in iodine amplifiers. a pulse of 0.5 GW(2 J in 4 ns) was obtained. ained.

  • PDF

Hepatitis C Virus Non-structural Protein NS4B Can Modulate an Unfolded Protein Response

  • Zheng Yi;Gao Bo;Ye Li;Kong Lingbao;Jing Wei;Yang Xiaojun;Wu Zhenghui;Ye Linbai
    • Journal of Microbiology
    • /
    • v.43 no.6
    • /
    • pp.529-536
    • /
    • 2005
  • Viral infection causes stress to the endoplasmic reticulum (ER). The response to endoplasmic reticulum stress, known as the unfolded protein response (UPR), is designed to eliminate misfolded proteins and allow the cell to recover. The role of hepatitis C virus (HCV) non-structural protein NS4B, a component of the HCV replicons that induce UPR, is incompletely understood. We demonstrate that HCV NS4B could induce activating transcription factor (ATF6) and inositol-requiring enzyme 1 (IRE1), to favor the HCV subreplicon and HCV viral replication. HCV NS4B activated the IRE1 pathway, as indicated by splicing of X box-binding protein (Xbp-1) mRNA. However, transcriptional activation of the XBP-1 target gene, EDEM (ER degradation-enhancing $\alpha-mannosidase-like$ protein, a protein degradation factor), was inhibited. These results imply that NS4B might induce UPR through ATF6 and IRE1-XBP1 pathways, but might also modify the outcome to benefit HCV or HCV subreplicon replication.

100 W class flash lamp pumped single stage Nd:YAG Amplifier (섬광등 펌프형 100 W급 4 중통과 Nd:YAG 증폭기 시스템의 증폭특성)

  • 고광훈;정도영;김재우;박상언;임창환;김철중
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.5
    • /
    • pp.515-520
    • /
    • 2003
  • Characteristics of an amplifier with repetition rate of a few KHz is investigated. The continuous flash lamp pumped Nd:YAG laser head is used as an amplifier. The thermally induced birefringence of the laser medium is compensated and the depolarization is reduced to 5% in a double-pass amplifier. The amplification factor of a four pass amplifier reaches to about 3.2 at the repetition rate 5-10 KHz and the pulse width is lengthened from 40 ns to 48 ns.

Fabrication and Characteristics of $N^+-P/P^+$ Polycrystalline Silicon Solar Cell ($N^+-P/P^+$ 다결정 실리콘 태양 전지의 제작 및 특성)

  • 정호선
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.19 no.5
    • /
    • pp.38-42
    • /
    • 1982
  • N+-P/P+solar cells were fabricated by using the polycrystalline silline wafer with the resistivity of 3-6 ohm-cm. minority carrier lifetimes, measured by Nd: YAG laser, were from 100ns up to 150ns. Conversion efficiency measured under AM 1 irradiation, were about 4%.

  • PDF

Thickness Effect on the Compressive Strength of T800/924C Carbon Fibre-Epoxy Laminates (T800/924C 탄소-에폭시 복합재판의 압축강도에 대한 두께 효과)

  • Lee, J.;C. Kong;C. Soutis
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.7-17
    • /
    • 2004
  • In this study, the effect of laminate thickness on the compressive behaviour of composite materials is investigated through systematic experimental work using the stacking sequences, $[O_4]_{ns},{\;}[45/0/-45/90]_{ns}$ and $[45_n/0_n/-45_n/90_n]_s$ (n=2 to 8). Parameters such as fibre volume fraction, void content, fibre waviness and interlaminar stresses, influencing compressive strength with increasing laminate thickness are also studied experimentally and theoretically. Furthermore the stacking sequence effects on failure strength of multidirectional laminates are examined. For this purpose, two different scaling techniques are used; (1) ply-level technique $[45_n/0_n/-45_n/90_n]s$ and (2) sublaminate level technique $[45/0/-45/90]_{ns}$. An apparent thickness effect existes in the lay-up with blocked plies, i.e. unidirectional specimens ($[O_4]_{ns}) and ply-level scaled multidirectional specimens ($[45_n/0_n/-45_n/90_n]_s$). Fibre waviness and void content are found to be main parameters contributing to the thickness effect on the compressive failure strength. However, the compressive strength of the sublaminate level scaled specimens ($[45/0/-45/90]_{ns}$) is almost unaffected regardless of the specimen thickness (since ply thickness remains constant). From the investigation of the stacking sequence effect, the strength values obtained from the sublaminate level scaled specimens are slightly higher than those obtained from the ply level scaled specimens. The reason for this effect is explained by the fibre waviness, void content, free edge effect and stress redistribution in blocked $0^{\circ}$ plies and unblocked $0^{\circ}$ plies. The measured failure strengths are compared with the predicted values.

Identification of Transmembrane Domain of a Membrane Associated Protein NS5 of Dendrolimus punctatus Cytoplasmic Polyhedrosis Virus

  • Chen, Wuguo;Zhang, Jiamin;Dong, Changjin;Yang, Bo;Li, Yanqiu;Liu, Chuanfeng;Hu, Yuanyang
    • BMB Reports
    • /
    • v.39 no.4
    • /
    • pp.412-417
    • /
    • 2006
  • We examined the intracellular localization of NS5 protein of Dendrolimus punctatus cytoplasmic polyhedrosis virus (DpCPV) by expressing NS5-GFP fusion protein and proteins from deletion mutants of NS5 in baculovirus recombinant infected insect Spodoptera frugiperda (Sf-9) cells. It was found that the NS5 protein was present at the plasma membrane of the cells, and that the N-terminal portion of the protein played a key role in the localization. A transmembrane region was identified to be present in the N-terminal portion of the protein, and the detailed transmembrane domain (SQIHMVWVKSGLVFF, 57-71aa) of N-terminal portion of NS5 was further determined, which was accorded with the predicted results, these findings suggested that NS5 might have an important function in viral life cycle.

Functional Characterization and Proteomic Analysis of Porcine Deltacoronavirus Accessory Protein NS7

  • Choi, Subin;Lee, Changhee
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1817-1829
    • /
    • 2019
  • Porcine deltacoronavirus (PDCoV) is an emerging swine enteric coronavirus that causes diarrhea in neonatal piglets. Like other coronaviruses, PDCoV encodes at least three accessory or species-specific proteins; however, the biological roles of these proteins in PDCoV replication remain undetermined. As a first step toward understanding the biology of the PDCoV accessory proteins, we established a stable porcine cell line constitutively expressing the PDCoV NS7 protein in order to investigate the functional characteristics of NS7 for viral replication. Confocal microscopy and subcellular fractionation revealed that the NS7 protein was extensively distributed in the mitochondria. Proteomic analysis was then conducted to assess the expression dynamics of the host proteins in the PDCoV NS7-expressing cells. High-resolution two-dimensional gel electrophoresis initially identified 48 protein spots which were differentially expressed in the presence of NS7. Seven of these spots, including two up-regulated and five down-regulated protein spots, showed statistically significant alterations, and were selected for subsequent protein identification. The affected cellular proteins identified in this study were classified into functional groups involved in various cellular processes such as cytoskeleton networks and cell communication, metabolism, and protein biosynthesis. A substantial down-regulation of α-actinin-4 was confirmed in NS7-expressing and PDCoV-infected cells. These proteomic data will provide insights into the understanding of specific cellular responses to the accessory protein during PDCoV infection.

An Interferon Resistance Induced by the Interaction between HCV NS5B and Host p48 (C형 간염 바이러스 NS5B 단백질과 숙주의 p48 단백질의 상호작용에 의한 인터페론 저항성의 유도)

  • Park, So-Yeon;Lee, Jong-Ho;Myung, Hee-Joon
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.353-359
    • /
    • 2008
  • Hepatitis C virus (HCV) is known as the causative agent of blood transmitted hepatitis. Two viral proteins, E2 and NS5A, are known to exert interferon resistance of HCV via PKR pathway. Here, we report a third protein, the RNA-dependent RNA polymerase (NS5B) of HCV, induced interferon resistance inhibiting p56 pathway. p56 was shown to interact with p48 subunit of eukaryotic initiation factor 3 (eIF3). This interaction inhibited formation of ternary complex in translation initiation. Using dual reporter assay system, we observed that the translation decreased when interferon alpha was added to the culture. But, in the presence of HCV NS5B, the translation partly recovered. NS5B and p48 subunit of eIF3 were shown to interact. This interaction seems to inhibit the interaction between p48 and p56. This is the first report that a virus exerts interferon resistance via p56 pathway.

Spectroscopic Study on Three States of Water in the Reverse Micelle Using Methylene Blue as a Probe (Methylene Blue를 이용한 역미셀에서 물의 세 가지 상태에 대한 분광학적 연구)

  • Bum Young Park;Kab Sang Jung;Soo-Chang Yu;Ho Seob Choi
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.4
    • /
    • pp.309-314
    • /
    • 2003
  • In order to find out the microscopic environmental information on the nonionic reverse micelle of Triton X-100/n-hexanol/water in cyclohexane, an absorption and fluorescence spectroscopic study has been conducted using a methylene blue(MB). The information on the microscopic states of water in the polar core of the reverse micelle has been found by investigating complex formation and solvatochromic behavior between MB and Triton X-100. As a result, it was found that there exist three states in the polar core of the reverse micelle. The measured values of $W(=[H_2O]/[Surf])$ for the three states of water are 0.71, 4.98, and 7.26, and the corresponding lifetimes of MB are $15.45 ns{\pm}0.56$, $12.27 ns{\pm}0.79$, and $8.28 ns{\pm}0.82$, respectively.

In vitro Study of Nucleostemin as a Potential Therapeutic Target in Human Breast Carcinoma SKBR-3 Cells

  • Guo, Yu;Liao, Ya-Ping;Zhang, Ding;Xu, Li-Sha;Li, Na;Guan, Wei-Jun;Liu, Chang-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2291-2295
    • /
    • 2014
  • Although nucleolar protein nucleostemin (NS) is essential for cell proliferation and early embryogenesis and expression has been observed in some types of human cancer and stem cells, the molecular mechanisms involved in mediation of cell proliferation and cell cycling remains largely elusive. The aim of the present study was to evaluate NS as a potential target for gene therapy of human breast carcinoma by investigating NS gene expression and its effects on SKBR-3 cell proliferation and apoptosis. NS mRNA and protein were both found to be highly expressed in all detected cancer cell lines. The apoptotic rate of the pcDNA3.1-NS-Silencer group ($12.1-15.4{\pm}3.8%$) was significantly higher than those of pcDNA3.1-NS ($7.2-12.0{\pm}1.7%$) and non-transfection groups ($4.1-6.5{\pm}1.8%$, P<0.01). MTT assays showed the knockdown of NS expression reduced the proliferation rate of SKBR-3 cells significantly. Matrigel invasion and wound healing assays indicated that the number of invading cells was significantly decreased in the pcDNA3.1-NS-siRNA group (P<0.01), but there were no significant difference between non-transfected and over-expression groups (P>0.05). Moreover, RNAi-mediated NS down-regulation induced SKBR-3 cell G1 phase arrest, inhibited cell proliferation, and promoted p53 pathway-mediated cell apoptosis in SKBR-3 cells. NS might thus be an important regulator in the G2/M check point of cell cycle, blocking SKBR-3 cell progression through the G1/S phase. On the whole, these results suggest NS might be a tumor suppressor and important therapeutic target in human cancers.