DOI QR코드

DOI QR Code

100 W class flash lamp pumped single stage Nd:YAG Amplifier

섬광등 펌프형 100 W급 4 중통과 Nd:YAG 증폭기 시스템의 증폭특성

  • 고광훈 (한국원자력연구소 양자광학기술개발부) ;
  • 정도영 (한국원자력연구소 양자광학기술개발부) ;
  • 김재우 (한국원자력연구소 양자광학기술개발부) ;
  • 박상언 (한국원자력연구소 양자광학기술개발부) ;
  • 임창환 (한국원자력연구소 양자광학기술개발부) ;
  • 김철중 (한국원자력연구소 양자광학기술개발부)
  • Published : 2003.10.01

Abstract

Characteristics of an amplifier with repetition rate of a few KHz is investigated. The continuous flash lamp pumped Nd:YAG laser head is used as an amplifier. The thermally induced birefringence of the laser medium is compensated and the depolarization is reduced to 5% in a double-pass amplifier. The amplification factor of a four pass amplifier reaches to about 3.2 at the repetition rate 5-10 KHz and the pulse width is lengthened from 40 ns to 48 ns.

수 KHz의 반복율로 발진하는 레이저광을 증폭하는 증폭기를 제작하고, 특성을 조사하였다. 증폭기로는 연속 방전하는 섬광등으로 펌핑되는 Nd:YAG 헤드를 사용하였고, 레이저 매질에서 발생하는 열 복굴절을 보상하여 이중통과 증폭기를 구성한 경우, 복굴절에 의한 레이저광 손실을 5%로 감소시켰다. 4 중통과 증폭기를 구성을 하였을 때, 반복율 5-10 KHz에서 이득은 약 3.2이었고, 펄스폭은 40 ns에서 48 ns로. 20%증가하였다.

Keywords

References

  1. Fusion Engineering and Design v.44 Demonstration of high energy-extraction efficiency in a novel laser-diode pumped eight-pass Nd:YAG zig-zag slab amplifier H.Kirriyama;T.Yoshida;M.Yamanaka;Y.Izawa;T.Yamanaka;S.Nakai;T.Kanzaki;H.Miyajima;M.Miyamoto;H.Kan https://doi.org/10.1016/S0920-3796(98)00302-0
  2. Fusion Engineering and Design v.44 Development of a high repetition rate Nd:YAG slab laser and soft X-ray genertion by cryogenic target S.Amano;A.Shimoura;S.Miyamoto;T.Mochizuk https://doi.org/10.1016/S0920-3796(98)00264-6
  3. Opt. Commun. v.165 Compact ultra-higgain multi-pass Nd:YAG amplifer with a low passive reflection phase conjugate mirror Y.Tzuk;Y.Glick;M.Tilleman https://doi.org/10.1016/S0030-4018(99)00230-8
  4. Opt. Lett. v.21 Four-pass amplifier for the pulsed amplification of a narrow-bandwidth continuous wave dye laser E.S.Lee;J.W.Hahn https://doi.org/10.1364/OL.21.001836
  5. Solid-State Laser Engineering (Springe) Verlag Walter Koechner
  6. Opt. Commun. v.128 All solid-state diode pumped Nd:YAG MOPA with stimulated Brillouin phase conjugate mirror H.L.Offerhaus;H.P.Godfried;W.J.Witteman https://doi.org/10.1016/0030-4018(96)00173-3
  7. Jpn. J. Appl. Phys. v.34 no.8a Four-Pass Amplifier System Compensating Themally Induced Birefringence Effect, Using a Novel Dumping Mechanism K.G.Han;.H.J.Kong https://doi.org/10.1143/JJAP.34.L994
  8. 한국광학회지 v.13 no.6 유도 브릴루앙 산란 위상공액 거울을 이용한 Nd:YAG 레이저 발진기의 출력 특성 이동원;이성구;박승현;공흥진 https://doi.org/10.3807/KJOP.2002.13.6.548
  9. J. Phys. D:Appl. Phys. v.26 Thermal lensing and depolarization in a highly pumped Nd:YAG laser amplifier Hans J.Eichler;A.Haase;R.Menzel;A.Siemoneit https://doi.org/10.1088/0022-3727/26/11/008
  10. Optical and Quantum Electronics v.28 A novel approach for compensation of birefringence in cylindrical Nd:YAG rods Q.Lu;N.Kugler;H.Weber;S.Dong;N.Muller;U.Wittrock https://doi.org/10.1007/BF00578551
  11. IEEE J. Quantum Electronics v.31 Design and Operation of a 150 W Near Dif-fraction-Limited Laser Amplifier with SBS Wavefront Correction C.B.Dane;L.E.Zapata;W.A.Neuman;M.A.Norton;L.A.Hackel https://doi.org/10.1109/3.341719
  12. IEEE J. Quantum Electronics v.31 no.8 100_W Average Output Power 1.2 Diffraction Limited from Pulsed Neodymium Single-Rod Amplifer with SBS Phase Conjugation H.J.Eichler;A.Haasa;R.Menzel https://doi.org/10.1109/3.391090
  13. IEEE J. Quantum Electronics v.30 no.11 An 8.2 J Phase-Conjugate Solid-State Laser Coherently Combining Eight Parallel Amplifiers D.S.Sumida;D.Cris Jones;D.A.Rockwell https://doi.org/10.1109/3.333716
  14. IEEE J. Quantum Electronics v.24 no.6 A Review of Phase-Conjugate Solid-State Lasers D.A.Rockwell https://doi.org/10.1109/3.236
  15. IEEE J. Quantum Electronics v.28 no.1 Applications of Brillouin Cells to High Repetition Rate Solid-State Lasers N.F.Andrew;E.Khazanov;G.A.Pasmanik https://doi.org/10.1109/3.119532
  16. Solid-State Lasers for Materials Processing Reinhard Ifflander
  17. J. Appl. Phys. v.51 no.5 The Multipass amplifier: Theory and numerical analysis W.H.Lowdermilk;J.E.Murray https://doi.org/10.1063/1.328014