• Title/Summary/Keyword: NOVEL ECOSYSTEM

Search Result 48, Processing Time 0.025 seconds

Modeling Service-Oriented Software Development: Services Ecosystem

  • Chung, Sam
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.1-6
    • /
    • 2005
  • The purpose of this paper is to propose a novel modeling approach called Services Ecosystem that applies the concept of ecosystems in ecology to Service-Oriented Software Development and Integration. For this purpose, an ecological system for software systems is proposed for the emerging Service-Oriented Computing paradigm, describing how participants interact with each other within their environments. Three emerging concepts, Service-Oriented Programming, Software Factories, and Service Grid, are employed to explain biotic and abiotic environments. Based upon the Services Ecosystem model, we demonstrate Services Ecosystem Model transformations by using a case example. The Services Ecosystem model is a novel approach for envisioning the Service-Oriented Computing paradigm in terms of an ecosystem in which the roles/perspectives of each participant and their relationships/interactions to environments are clearly described with a holistic view.

  • PDF

Bioprospecting Potential of the Soil Metagenome: Novel Enzymes and Bioactivities

  • Lee, Myung Hwan;Lee, Seon-Woo
    • Genomics & Informatics
    • /
    • v.11 no.3
    • /
    • pp.114-120
    • /
    • 2013
  • The microbial diversity in soil ecosystems is higher than in any other microbial ecosystem. The majority of soil microorganisms has not been characterized, because the dominant members have not been readily culturable on standard cultivation media; therefore, the soil ecosystem is a great reservoir for the discovery of novel microbial enzymes and bioactivities. The soil metagenome, the collective microbial genome, could be cloned and sequenced directly from soils to search for novel microbial resources. This review summarizes the microbial diversity in soils and the efforts to search for microbial resources from the soil metagenome, with more emphasis on the potential of bioprospecting metagenomics and recent discoveries.

'Bring to Lab' of 19 Novel Species Among 60 Isolates Retrieved from a Freshwater Pond

  • Song, Jae-Ho;Yang, Seung-Jo;Cho, Jang-Cheon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.168-175
    • /
    • 2007
  • We report here on the cultivation of numerous novel bacterial species from a eutrophic freshwater pond. A total of 60 strains, 15 strains per each culture medium, were obtained from the surface of a eutrophic freshwater pond by employing a conventional dilution-plating method with four different kinds of culture media, including R2A, 1/10R2A, PCA, and 1/10PCA. Among the 60 strains isolated, 27 strains showed less than 97% 16S rRNA gene sequence similarities to validly published species, and thus they are considered to comprise 19 novel species. Of the 27 strains assigned to the novel species, the majority of the strains (20 strains) were affiliated with the Alphaproteobacteria and Betaproteobacteria. The remaining 7 strains were affiliated with the Gammaproteobacteria, Firmicutes, Actinobacteria, and Deinococci. Because we have isolated 19 novel species from a usual freshwater pond using a conventional culturing technique, our results suggest that an unexplored ecosystem, even if it looks like a common ecosystem found elsewhere, harbors diverse unidentified microbes, which will be definitely further characterized.

The Rumen Ecosystem : As a Fountain Source of Nobel Enzymes - Review -

  • Lee, S.S.;Shin, K.J.;Kim, W.Y.;Ha, J.K.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.6
    • /
    • pp.988-1001
    • /
    • 1999
  • The rumen ecosystem is increasingly being recognized as a promising source of superior polysaccharide-degrading enzymes. They contain a wide array of novel enzymes at the levels of specific activities of 1,184, 1,069, 119, 390, 327 and $946{\mu}mol$ Reducing sugar release/min/mg protein for endoglucanase, xylanase, polygalactouronase, amylase, glucanase and arabinase, respectively. These enzymes are mainly located in the surface of rumen microbes. However, glycoside-degrading enzymes (e.g. glucosidase, fucosidase, xylosidase and arabinofuranosidase, etc.) are mainly located in the rumen fluid, when detected enzyme activities according to the ruminal compartments (e.g. enzymes in whole rumen contents, feed-associated enzymes, microbial cell-associated enzymes, and enzymes in the rumen fluid). Ruminal fungi are the primary contributors to high production of novel enzymes; the bacteria and protozoa also have important functions, but less central roles. The enzyme activities of bacteria, protozoa and fungi were detected 32.26, 19.21 and 47.60 mol glucose release/min/mL mediem for cellulose; 42.56, 14.96 and 64.93 mmol xylose release/min/mL medium after 48h incubation, respectively. The polysachharide-degrading enzyme activity of ruminal anaerobic fungi (e.g. Neocallimastix patriciarum and Piromyces communis, etc.) was much higher approximately 3~6 times than that of aerobic fungi (e.g. Tricoderma reesei, T. viridae and Aspergillus oryzae, etc.) used widely in industrial process. Therefore, the rumen ecosystem could be a growing source of novel enzymes having a tremendous potential for industrial applications.

Industrial Applications of Rumen Microbes - Review -

  • Cheng, K.J.;Lee, S.S.;Bae, H.D.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.1
    • /
    • pp.84-92
    • /
    • 1999
  • The rumen microbial ecosystem is coming to be recognized as a rich alternative source of genes for industrially useful enzymes. Recent advances in biotechnology are enabling development of novel strategies for effective delivery and enhancement of these gene products. One particularly promising avenue for industrial application of rumen enzymes is as feed supplements for nonruminant and ruminant animal diets. Increasing competition in the livestock industry has forced producers to cut costs by adopting new technologies aimed at increasing production efficiency. Cellulases, xylanases, ${\beta}$-glucanases, pectinases, and phytases have been shown to increase the efficiency of feedstuff utilization (e.g., degradation of cellulose, xylan and ${\beta}$-glucan) and to decrease pollutants (e.g., phytic acid). These enzymes enhance the availability of feed components to the animal and eliminate some of their naturally occurring antinutritional effects. In the past, the cost and inconvenience of enzyme production and delivery has hampered widespread application of this promising technology. Over the last decade, however, advances in recombinant DNA technology have significantly improved microbial production systems. Novel strategies for delivery and enhancement of genes and gene products from the rumen include expression of seed proteins, oleosin proteins in canola and transgenic animals secreting digestive enzymes from the pancreas. Thus, the biotechnological framework is in place to achieve substantial improvements in animal production through enzyme supplementation. On the other hand, the rumen ecosystem provides ongoing enrichment and natural selection of microbes adapted to specific conditions, and represents a virtually untapped resource of novel products such as enzymes, detoxificants and antibiotics.

High Level of Bacterial Diversity and Novel Taxa in Continental Shelf Sediment

  • Hong, Jin-Kyung;Cho, Jae-Chang
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.771-779
    • /
    • 2012
  • The bacterial diversity of the continental shelf sediment in the Yellow Sea was investigated by the cloning and sequencing of PCR-amplified 16S rRNA genes. The majority of the cloned sequences were distinct phylotypes that were novel at the species level. The richness estimator indicated that the sediment sample might harbor up to 32 phylum-level taxa. A large number of low-abundance, phylum-level taxa accounted for most of the observed phylogenetic diversity at our study site, suggesting that these low-abundance taxa might play crucial roles in the shelf sediment ecosystem.

Metagenome, the Untapped Microbial Genome, toward Discovery of Novel Microbial Resources and Application into the Plant Pathology

  • Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.21 no.2
    • /
    • pp.93-98
    • /
    • 2005
  • Molecular ecological studies of microbial communities revealed that only tiny fraction of total microorganisms in nature have been identified and characterized, because the majority of them have not been cultivated. A concept, metagenome, represents the total microbial genome in natural ecosystem consisting of genomes from both culturable microorganisms and viable but non-culturable bacteria. The construction and screening of metagenomic libraries in culturable bacteria constitute a valuable resource for obtaining novel microbial genes and products. Several novel enzymes and antibiotics have been identified from the metagenomic approaches in many different microbial communities. Phenotypic analysis of the introduced unknown genes in culturable bacteria could be an important way for functional genomics of unculturable bacteria. However, estimation of the number of clones required to uncover the microbial diversity from various environments has been almost impossible due to the enormous microbial diversity and various microbial population structure. Massive construction of metagenomic libraries and development of high throughput screening technology should be necessary to obtain valuable microbial resources. This paper presents the recent progress in metagenomic studies including our results and potential of metagenomics in plant pathology and agriculture.

The Environmental Vision in Information Technology Culture and Accelerated Future: Don DeLillo's Cosmopolis (정보기술문화와 가속화된 미래에 대한 환경 비전 -돈 들릴로의 『코스모폴리스』)

  • Lee, Chung-Hee
    • Journal of English Language & Literature
    • /
    • v.58 no.5
    • /
    • pp.943-974
    • /
    • 2012
  • This paper aims to suggest the compromising vision of nature and technology as the solution to get out of the globally accelerated technology environment in Don DeLillo's Cosmopolis. This novel intends to emphasize on the importance of physical environment as a precondition for the survival of human. Eric wants to be a posthuman with the cybernetic idea, pursuing to be the digital self in a vast biosphere that integrates both the nature and the technology. His obsessive worship of technology through his quest for the futurity results in the effacement of the humanity and the insulation from the nature. Cosmopolis is DeLillo's first 9/11 novel, which describes a young-billionaire asset manager Eric's one-day life in New York in April 2000. Eric can be the third Twin Tower as a symbol of global economic hegemony. By the allusion of the 9/11 catastrophic event, it can be said that Eric's fall is caused by his hubris and avarice as a global capitalist. Crossing the 47th Street toward the West in his limousine, his journey is revealed as the environmental reflections on his desires to attain the futurity and transcendence by technology. This novel cautions that the abuse of technology can bring out the obsolescence and erasure of the humanity and the nature. DeLillo suggests that the best hope for the evolutionary possibility of posthuman can be realized through the correlation with nature and technology. This future-oriented novel warns that the excessive technology should not lead to the disappearance of community and humanity, and the separation of self and nature. It admonishes that they should not follow pseudo-cosmopolitanism as the greedy world citizens, devoting on the velocity of newest technology. This novel recommends that humans should be the world citizen of global ecosystem, making the ameliorative environment through the correlation with self/environment and technology/nature, and gardening the restorative biosphere and the younger planet.

SoEM: a novel PCR-free biodiversity assessment method based on small-organelles enriched metagenomics

  • Jo, Jihoon;Lee, Hyun-Gwan;Kim, Kwang Young;Park, Chungoo
    • ALGAE
    • /
    • v.34 no.1
    • /
    • pp.57-70
    • /
    • 2019
  • DNA metabarcoding is currently used for large-scale taxonomic identification to understand the community composition in various marine ecosystems. However, before being widely used in this emerging field, this experimental and analytic approach still has several technical challenges to overcome, such as polymerase chain reaction (PCR) bias, and lack of well-established metabarcoding markers, a task which is difficult but not impossible to achieve. In this study, we present an adapted PCR-free small-organelles enriched metagenomics (SoEM) method for marine biodiversity assessment. To avoid PCR bias and random artefacts, we extracted target DNA sequences without PCR amplification from marine environmental samples enriched with small organelles including mitochondria and plastids because their genome sequences provide a valuable source of molecular markers for phylogenetic analysis. To experimentally enrich small organelles, we performed subcellular fractionation using modified differential centrifugation for marine environmental DNA samples. To validate our SoEM method, two marine environmental samples from the coastal waters were tested the taxonomic capturing capacity against that of traditional DNA metabarcoding method. Results showed that, regardless of taxonomic levels, at least 3-fold greater numbers of taxa were identified in our SoEM method, compared to those identified by the conventional multi-locus DNA metabarcoding method. The SoEM method is thus effective and accurate for identifying taxonomic diversity and presents a useful alternative approach for evaluating biodiversity in the marine environment.

A Detection of Novel Habitats of Abies Koreana by Using Species Distribution Models(SDMs) and Its Application for Plant Conservation (종 분포 모형을 활용한 새로운 구상나무 서식지 탐색, 그리고 식물보전 활용)

  • Kim, Nam-Shin;Han, DongUk;Cha, Jin-Yeol;Park, Yong-Su;Cho, Hyeun-Je;Kwon, Hye-Jin;Cho, Yong-Chan;Oh, Seung-Hwan;Lee, Chang-Seok
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.6
    • /
    • pp.135-149
    • /
    • 2015
  • Korean fir(Abies koreana E.H.Wilson 1920), endemic tree species of Korean peninsula, is considered as vulnerable and endangered species to recent rapid environmental changes such as land use and climate change. There are limited activities and efforts to find natural habitats of Korean fir for conservation of the species and habitats. In this study, by applying SDMs (Species Distribution Models) based on climate and topographic factors of Korean fir, we developed Korean fir's predicted distribution model and explored novel natural habitats. In Mt. Shinbulsan, Youngnam region and Mt. Songnisan, we could find korean fir's two novel habitat and the former was the warmest($13^{\circ}C$ in annual mean temperature), the driest(1,200mm~1,600mm in annual rainfall) and relatively low altitude environment among Korean fir's habitats in Korea. The result of SDMs did not include mountain areas of Gangwon-do as habitats of A. nephrolepis, because there were different contributions of key habitat environment factors, summer rainfall, winter mean temperature and winter rainfall, between A. koreana and A. nephrolepis. Our results raise modification of other distribution models on Korean fir. Novel habitat of Korean fir in Mt. Shinbulsan revealed similar habitat affinity of the species, ridgy and rocky site, with other habitats in Korea. Our results also suggest potential areas for creation of Korea fir's alternative habitats through species reintroduction in landscape and ecosystem level.