Modeling Service-Oriented Software Development: Services Ecosystem

Sam Chung

Computing & Software Systems
Institute of Technology
University of Washington, Tacoma
1600 Commerce St.,
Tacoma, WA 98402
1-253-692-5866
chungsa@u.washington.edu

Abstract - The purpose of this paper is to propose a novel modeling approach called Services Ecosystem that
applies the concept of ecosystems in ecology to Service-Oriented Software Development and Integration. For
this purpose, an ecological system for software systems is proposed for the emerging Service-Oriented
Computing paradigm, describing how participants interact with each other within their environments. Three
emerging concepts, Service-Oriented Programming, Software Factories, and Service Grid, are employed to
explain biotic and abiotic environments. Based upon the Services Ecosystem model, we demonstrate Services
Ecosystem Model transformations by using a case example. The Services Ecosystem model is a novel
approach for envisioning the Service-Oriented Computing paradigm in terms of an ecosystem in which the
roles/perspectives of each participant and their relationships/interactions to environments are clearly

described with a holistic view.

Keywords: Service-Oriented Architecture, Web Services, Model-Driven Development

1 Introduction

Service-Oriented Computing (SOC) has emerged as a
software development paradigm that can minimize the
differences in the perspectives of business and software
professionals. The original intent of SOC was to support
the development of software systems through the use of
standardized software components that are declared as
services and can be interoperable within heterogeneous
software systems [1, 2). The SOC paradigm enables the
design of software systems as a set of services, ie.
Software as a Service (SAAS) {3]: Software systems can
thus be recursively constructed as a set of services that
employ standardized service interfaces and interaction
protocols.

However, modern software developments using the
SOC paradigm require many participants to be involved
with different perspectives, such as publishing, discovering,
composing, invoking services, etc. Those participants
interact with one other and cope with the constantly
changing requirements and evolving computing
environments. The different perspectives of participants
and interactions between them and their environments
require modeling with a holistic view. In this paper, we

propose a novel approach to modeling the participants and
their interaction with a Services Ecosystem that applies the
concept of ‘biological ecosystem’ (or ecological system) to
software development. The concept of ecosystem model
has been introduced to explain how organic community
behavior occurs in response to environment in ecology and
environmental science [4]. Based upon the ecological
hierarchy for software systems and the ecosystem model of
Odum and Barrett [4], a Services Ecosystem model is
proposed for depicting interactions between service
consumers and producers on user requirements within
programming, product development, and infrastricture
environments. These environments are described by using
Service-Oriented Programming (SOP), Software Factories
(SF), and Service Grid (SG) concepts, respectively. Based
upon the Services Ecosystem Model, we demonstrate and
discuss Services Ecosystem model transformations with an
example using web services and a composition technique.

2 Related Works

Various attempts have been made to provide
conceptual models of SOA (Service-Oriented Architecture).
A popular approach is to explain the SOA in terms of

technology stack models such as SOAP, WSDL, BPEL
OWL-S, UDDI, etc [5]. Since the technology stack model
views the SOA in terms of available languages and
protocols, the model needs to be changed with emerging
technologies. While the technology stack model is very
useful for software professionals, but is not so for business
professionals.

Based on the three service stakeholders (service
consumer, publisher, and provider) and their interactions,
the basic SOA model has been broadly accepted in the SOC
community [1,6]. The basic SOA model assumes that the
first-generation of web services technologies, exemplified
by WSDL, SOAP, and UDDI, is used. A business process
conceptual building block that can be understood and used
by business professionals has not been introduced yet in
this basic SOA model. Papazoglou proposed an extension
to SOA [6] from the basic SOA to include the second-
generation web services technologies such as service
orchestration, service transaction management, etc. Three
different types of services - basic, composite, and managed
services - were introduced for several stakeholders such as
service client, service aggregator, service provider, service
operator, and market maker. However, the extended SOA
does not explicitly show how business processes are
designed and executed in terms of SOA stakeholders on the
service grid infrastructure.

Zimmermann et al described a hybrid Service-
Oriented Analysis and Design (SOAD) modeling approach
for SOA projects that combines the elements of OOAD,
Enterprise Architecture (EA) frameworks, and Business
Processing Modeling (BPM) [7]. Although this approach is
unique in terms of integrating existing modeling
approaches for SOA projects, these approaches were not
mentioned in terms of interactions between participants and
their environments.

3 Services Ecosystem

In order to emphasize the interactions of project
participants and their environments, the term “ecosystem”
has been used in several articles without referring to an
ecosystem model in ecology [8, 9, 10]. In this paper, the
ecosystem model of Odum and Barrett in [4] is used. In [4],
Odum and Barrett define an ecosystem as a community
with biotic (living) and abiotic (nonliving) environment.
Also, an ecosystem is a black box in its input and output
environments. The ecosystem model of Odum and Barrett
is based on energy, consumers, producer, storage, and
biotic and abiotic environments.

In this research, user requirements and domain
expertise are defined as energy sources in the input
environment. Also, the solutions, which may be delivered
by software applications, are considered as the components
of the output environment. Then, we define an ecosystem in

terms of a matrix, which we call the Services Ecosystem
Matrix. The Services Ecosystem Matrix S [e, p] is defined
for a type of environment e € E and a type of participant p
€ P. There are interactions between two adjacent elements.
In the SOC paradigm, E is the set of three different types of
environments: programming, development, and execution.
We introduced three different environments such as
Service-Oriented Programming (SOP), Software Factories
(SF), and Service Grid (SG). P is the set of participants
such as Service Consumer (SC), Service Broker (SB), and
Service Provider (SP). This model is shown in Figure 1.

me) SC SB SP
Isop

User E
o

Environment

SF| S[e,p]

SG [

S [e, pl, where ¢ € E ={SOP, SF, SG} and p € P={SC, SB, SP}

Figure 1. A Services Ecosystem

A SC discovers a required service and invokes the
discovered service either directly or through a service
broker. A SP develops a service in a programming
language and publishes its service specification to a service
registry. A service broker composes a set of services as a
new service and administers the registry.

Service providers publish software components to a
service registry as web services, publicizing their interface
so that a service consumer can access services exposed by
the service provider. A service registry, in most cases, will
be present to aid the service consumer in discovering
services published by the service providers. The
interactions between SC, SB, and SP are modeled using a
Domain Specific Language (DSL) [11] or Unified
Modeling Language (UML) that can be converted into code.

At the next level, we have a software factory that
utilizes Service Oriented Programming. Jack Greenfield
and Keith Short proposed the software factory concept in
[11]. It has been applied to the development of Microsoft
Visual Studio 2005. At this level, we provide patterns,
DSLs, and schemas that build templates targeted at various
domains.

At the bottom level resides a Service Grid (SG)
environment. We define a service grid as a set of
distributed service nodes that are interconnected through an
Enterprise Service Bus (ESB) [12], which is shown in
Figure 2. A service node is a service platform that can play
a role in requesting, brokering (discovering, composing,

and executing), managing, and publishing a service. A set
of service nodes on the service grid is integrated on demand
to build a large-scale, distributed, heterogeneous, and
trustworthy software system at either design or even
execution time. The ESB maintains the protocols that make
up the Service Oriented Architecture such as SOAP, HTTP,
and WS-* related protocols. Also, network protocols and
the physical network connection are all part of this layer.
This layer also takes care of service routing, load balancing
and resource management facilities.

The SCC Services Ecosystem matrix in Figure 2
shows the three participants interact with each other in the

three given internal environments. Each element S [e, p]
has its own process or methodology. Three possible
approaches are possible to build the matrix: environment-
first, participant-first, and environment-participant first
Services Ecosystem modeling. The environment-first
approach focuses on the interactions of all participants
within a specific environment. The participant-first
approach focuses on the interactions of a participant within
all three environments. The environment-participant
approach focuses on the interactions of a participant with a
specific environment. Then, the modeling process is
expanded to adjacent environment-participant elerients
until all environment-participant elements are modeled.

Figure 2. A Concern Matrix of the SCC Services Ecosystem

4 Case Example

Any service-oriented software development can be
modeled and developed by using its own Services
Ecosystem. Let’s consider the following case example: In
the Stock Currency Converter (SCC), there are investors
who are from foreign countries that want to get the stock
quote of a company within the United States. An investor
needs to get the stock quote in US Dollars and convert the
quote on their own using a stock trading company ABC’s
web site. The SCC web application receives inputs for both
a country name and a stock symbol to be quoted, and
displays the quoted stock prices in the selected country’s
monetary unit.

The environment-participant approach is chosen to
build the matrix of the SCC services ecosystem in Figure 2
For example, let’s select S [e, p], where ¢ = SOP and p =
SC. Among nine mappings, only two mappings are chose
for explanation:

e S [SOP, SC] - Mapping of Web Application to the
Service-Oriented Programming Environmen: by
Service Consumer:

e S [SOP, SB] - Mapping of BPEL to the Service-
Oriented Programming Environment by Service Broker

S [SOP, SC]: The service consumer is first interested
in the type of user interface. Based upon the user
requirement, a web application is selected for 24*7 service
regardless of location. The object of this service is shown in
the S [SOP, SC] element of Figure 2. Also, the SC is
interested in discovering and invoking necessary services
from a service broker(s). The discovery can be done
manually/programmatically, with/without intelligence, or
implicitly/explicitly. Since the discovery is done manually
and implicitly in this case, there is no interaction between
SC and SB for the discovery. The assumption is that the SC
knows what services are available and where they are
located at in advance. The SC invokes the service S12. The
SC does not know and does not need to know the design
and implementation of the service S12 since S [SOP, SC]
and S [SOP, SB] are loosely coupled through web services.
The interaction with label B (Binding) exists between S
[SOP, SC] and S [SOP, SB] in Figure 2 that is similar to a
UML activity diagram.

An executable model, compared to expressive visual
models in UML, can represent the diagram in Figure 3. The
web application ‘SCCWebApplication’ invokes a web
service called ‘CurrencyStock’. This diagram is described
in Microsoft domain specific language and generates an
executable framework in C#.

sccwebContent | SCCWebApplication

.3 ASP.NETwebApplic ...
L ?
k3l

Currencystock | CurrencyStock {
! .
N \
R ExternalwebService
| A |

Figure 3. A Model-Driven Development using Microsoft DSL for S [SOP,
p] where pe {SC, SB}

[SOP, SBJ: The SB is interested in service discovery,
matchmaking, and composition. By using a BPEL
composition method [13], the service broker composes a
new composite service S12 by using two services S1 and
S2, shown in Figure 2. The SB discovered two web
services ‘Currency Exchange Rate’ and ‘Delayed Stock
Quote’ through the ‘Xmethods.com’ service registry. This
composition is model-driven, which is shown in Figure 4.
By using Oracle’s BPEL designer and BPEL as the domain
specific language for service composition modeling, two
services are composed into a new service which is
published as a new web service.

Service-Oriented Programming is applied here
because we are using the concept of service-oriented
architecture to integrate software components in order to

create a new software component. With the stock quote
currency conversion example, there were service providers
that first published services to a services directory such as
Xmethods.com. Then, we discovered the services that were
useful to us and invoked those services directly, and the
results were combined to form a new result useful to a user.
This new application created using BPEL will also become
another service that others might invoke directly or to
compose it with another service. It will be published in the
service registry. Many instances of SOA occur as we create
applications using the SOP approach.

[—-_"’:1", 4
|
]
process (client)
N
AssignInput
faw-1
(CurrencyExch... %Y |
]
I :
T
¢
(R

MultiplyResults

Yo
prve
i
process (client)

I
4
2]

AR

Figure 4. A Model-Driven Service Composition using Oracle Domain
Specific Language for S [SOP, SB]

By repeating this environment-participant approach
for all 9 elements, the functional diagram of the SCC
Services Ecosystem model in Figure 2 is built. Also, we
summarize the required technologies for each component of
an environment for a specific participant in Table 1.

5 Analysis

From both the concern matrix in Figure 2 and the
technology matrix in Table 1 for the SCC Services
Ecosystem, our analyses show that the service ecosystem
model brings multiple and coordinated views to all
participants in a service-oriented software development and
integration from the least fine-grained view to the most
coarse-grained view for all participants and their
interactions across all environments.

Table 1. A Technology Matrix for the SCC Services Ecosystem

Env, | Component Censumer Broker Provider

SOMDD (Distributed System SOMDD (Oracle BPEL Designer |

MDD Designer with MS DSL) with Oracle DSL) ? (OOMDD)

SOP . o Discovery, composing, L.

SOA Discovery, binding publishing, binding Publishing

Languages MS DSL, XHTML, ASP .NET Oracle DSL ? (UML Class Diagram)
OOMDD (Visual Programming

MDD for Web Form, Class Designer with SOMDD (BPEL) ? (OOMDD)
MS DSL)

Languages C# NET BPEL, WSDL Java, WSDL

Framework .NET Framework 2.0 Java Class Hierarchy
MVC, Layered Architecture, . ? (CBD, Layered

SF Pattern Muiti-Tier Architecture, kiﬂi;ﬁﬁgiﬁ:ﬁ;@r&re Architecture,
C/8 Architecture | Multi-Tier Architecture)
Composition method — BPEL N

Process XP, FDD XP, FDD ? (XP, FDD)
MS Visual Studio 2005 Beta
(Distributed System Designer, . 7 (Java SDK,

Tools Class Diagram Designer), Web Oracle BPEL Designer Java2WSDL, ECLIPSE)
Browser

Service VM (.NET CLR), BPEL Engine (Oracle BPEL SOAP Engine

SG Node SOAP Engine (MS IIS) Engine) (WebMethods Glue)
ESB SOAP, HTTP | soap SOAP

The Services Ecosystem matrix S is defined for each
environment ¢ € E and each role of a participant p € P,
where E is the set of three different types of environment
for service-oriented programming, development, and
execution and P the set of participants for service consumer,
service broker, and service provider. First of all, the holistic
view on a software project is provided through the Services
Ecosystem Matrix, S [e, p], where ¢ € E={SOP, SF, SG}
and p € P = {SC, SB, SP}. The software project manager
needs to know who is working in which part of the project
under which development environments and infrastructure.

In addition to the holistic view of the Services
Ecosystem Matrix S, which is the most coarse-grained view
for all participants, the least fine-grained view for a
participant in a specific environment is also provided in
terms of an element of S. An element of S [e, p] is a fine-
grained view that describes which participant needs to be
involved in which environment. Its interactions with
adjacent elements describe how the view can be
transformed to other views.

6 Conclusions

The results of this research show that modern software
developments using the SOC paradigm can be modeled by
using a biological ecosystem concept. Modermn software
development is very similar to an ecosystem in nature since
various participants with different views for a software
project interact with each other and their environments.

There are several key benefits of this approach.
Firstly, since the Services Ecosystem model provides a
holistic view of service-oriented software development to
all participants considering their service-oriented
programming, development, and execution, the efforts of
all participants can be easily orchestrated. Secondly, since a
specific view of each participant within the same
environment shows the interactions of participants within
the environment, the boundaries of activities of each
participant are clearly defined.

This Services Ecosystem model is the first step “oward
understanding service-oriented software development and
integration in terms of interactions among -roject
participants and their project environments. Other ecology-
based concepts that have been researched in ecology need
to be studied and transformed into the environment of the
Services Ecosystem model. For example, natural selection,
speciation, and evolution can be studied for business
process adaptation, composition, and evolution. Currently,
we are studying the representation, composition, and
adaptation of business process collaboration in terms of
attributes and traits of organisms and population change
over time, based upon the Services Ecosystem model.

References

(11 Thomas Erl. Service-Oriented Architecture: A Field
Guide to Integrating XML and Web Services. Prentice Hall.
2004.

(2] Steffen Staab. (2003). Web Services: Been There,
Done That? IEEE Intelligent Systems. January/February
2003. Vol. 18, No. 1. pp. 72-85.

[3] Mark Turner, David Budgen, and Pearl Brereton.
Turning Software into a Service. JEEE Computer. October
2003. Vol. 36, No. 10. pp. 38-44.

[4] Eugene P. Odum, Gary W. Barrett. Fundamentals of
Ecology. Thomson Brooks/Cole, 5th Ed, Belmont, CA,
2005.

{51 Frank Leymann. (2003). Web Services: Distributed
Applications without Limits. Invited Talk and Joint Opening
Speech at BTW 2003 and KiVS 2003. Proceedings
Database Systems For Business, Technology and Web
BTW 2003.

{6] Mike P. Papazoglou. Service -Oriented Computing:
Concepts, Characteristics and Directions. Proceedings of
the Fourth International Conference on Web Information
Systems Engineering 2003. December 10 - 12, 2003. pp. 3.

[71 Olaf Zimmermann, Pal Krogdahl, and Clive Gee.
Elements of Service-Oriented Analysis and Design: An
interdisciplinary modeling approach for SOA projects. June
2004.

(8] PC Magazine. The Web Services Ecosystem. Available
at
http://www.pcmag.com/image_popup/0,1871,s=1479&iid=
28020,00.asp

[91 IDC. European Application Services Ecosystems.
Available at
http://www.idc.com/getdoc.jsp?containerld=IDC_P7193

[10] Jim Highsmith. Agile Sofiware Development
Ecosystems. Addison Wesley Professional. 2002.

[11] Jack Greenfield and Keith Short. Software
Factories: Assembling Applications with Patterns, Models,
Frameworks and Tools. Object Oriented Programming
Systems Languages and Applications (OOPSLA) 2003,
QOctober 26-30, 2003. Anaheim, CA. pp. 16-27.

[12] David A. Chappell. Enterprise Service Bus. O’Reilly.
2004.

[13] Nikola Milanovic and Miroslaw Malek. Current
Solutions for Web Service Composition. [EEE [nternet
Computing, November/December 2004. Vol. 16. pp. 51-59.

