• Title/Summary/Keyword: NONLINEAR PHENOMENON

Search Result 359, Processing Time 0.024 seconds

An Experiment Study on the Chaos Phenomenon for a Rectangular Cantilever Beam (직사각형 외팔보의 혼돈현상에 대한 실험)

  • Kim, Myoung-Gu;Pak, Chul-Hui;Cho, Chong-Du;Piao, Chang-Hao
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.567-571
    • /
    • 2005
  • The slender rectangular cantilever beam has vef interesting to study dynamic behaviors of the harmonic base excitation of a cantilever beam shows many nonlinear dynamics due to unstability , energy transfer and mode coupling. Nonlinear phenomenon shows superharmonic, subharmonic, super subharmonic and chaotic motions of the cantilever beam. Experimental observation and verification of these phenomenon carry much importance for the theoretical study as well as in it self. In the experimental cantilever beam, the chaotic motions of the beam appear as a pink noise signal in FFT analysis and as a torus structure in the oscilloscope analyzed to eventually give information of chaotic motions of the cantilever beam.

  • PDF

Nonlinear Function Approximation of Moduled Neural Network Using Genetic Algorithm (유전 알고리즘을 이용한 모듈화된 신경망의 비선형 함수 근사화)

  • 박현철;김성주;김종수;서재용;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.10-13
    • /
    • 2001
  • Nonlinear Function Approximation of Moduled Neural Network Using Genetic Algorithm Neural Network consists of neuron and synapse. Synapse memorize last pattern and study new pattern. When Neural Network learn new pattern, it tend to forget previously learned pattern. This phenomenon is called to catastrophic inference or catastrophic forgetting. To overcome this phenomenon, Neural Network must be modularized. In this paper, we propose Moduled Neural Network. Modular Neural Network consists of two Neural Network. Each Network individually study different pattern and their outputs is finally summed by net function. Sometimes Neural Network don't find global minimum, but find local minimum. To find global minimum we use Genetic Algorithm.

  • PDF

Nonlinear Response Phenomena of a Randomly Excited Vibration Absorber System (불규칙적으로 가진되는 동흡진기계의 비선형응답현상)

  • Cho, Duk-Sang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.2
    • /
    • pp.141-147
    • /
    • 2000
  • The nonlinear response statistics of an autoparameteric system under broad-band random excitation is investigated. The specific system examined is a vibration absorber system with internal resonance, which is known to be a good model for a variety of engineering systems, including ship motions with nonlinear coupling between pitching and rolling motions. The Fokker-Planck equations is used to generate a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian closure method the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinary differential equations. The jump phenomenon was found by Gaussian closure method under random excitation.

  • PDF

A study of the Snapping investigations of Seoul Southwest Baseball Dome (서울 서남권 돔 야구장의 Snapping 검토에 관한 연구)

  • Kim, Seung-Deog;Kim, Nam-Seok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.4
    • /
    • pp.133-140
    • /
    • 2010
  • This paper studies on the instability behaviour of the Seoul southwest baseball dome. The nonlinear Snapping phenomenon of the structure is investigated about the load mode by the design load of analysis structure and these combined loads. The initial imperfection obtains the buckling mode through the eigenvalue analysis of the tangential stiffness matrix and uses this for the nonlinear analysis. However, the buckling of members or the local buckling, and etc don't consider in the research range of this research task. Also it is limited the overall buckling phenomenon.

  • PDF

A Dynamic Anti-windup Scheme for Input-constrained Feedback Linearizable Nonlinear Systems (궤환선형화 가능한 비선형 시스템의 입력제한을 고려한 동적 와인드엎 방지)

  • 윤성식;박종구;윤태웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.534-534
    • /
    • 2000
  • This paper proposes a dynamic compensation scheme for input-constrained feedback linearizable nonlinear systems to cope with the windup phenomenon. Given a feedback linearizing controller for such a nonlinear system designed without considering its input constraint, an additional dynamic compensator is proposed to account for the constraint. This dynamic anti-windup is based on the minimization of a reasonable performance index, and some stability properties of the resulting closed-loop are presented.

  • PDF

Nonlinear Vibration Characteristics of Piezoelectric Microactuators in Hard Disk Drive Drives (HDD용 압전형 마이크로 액츄에이터의 비선형 진동특성)

  • Chong, Duk-Young;Lee, Seung-Yop;Kim, Chul-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.225-231
    • /
    • 2000
  • Nonlinear characteristics of piezoelectric-type micro actuator used for hard disk drives are experimentally analyzed using Hutchinson's Magnum acturator. The nonlinear effects include hysteresis, superharmonic resonance, jump phenomenon, and shifting of natural frequencies. The effects of exciting frequency and input voltage on the nonlinear phenomena are investigated. It is shown that the micro actuator has the typical 3 times superhamonic resonances coupled to both 1st torsional and sway modes of the suspension.

  • PDF

A Study on the Identification of Nonlinear Vibration System with Stick Slip Friction (Stick-Slip 마찰이 있는 비선형 진동 시스템의 규명에 관한 연구)

  • 허인호;이병림;이재응
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.451-456
    • /
    • 2000
  • In this paper a discrete time model for the identification of nonlinear vibration system with stick-slip friction is proposed. The proposed model can handle the highly nonlinear behavior of the friction such as stick-slip phenomenon and Stribeck effect. The basic idea of the proposed model is as follows : If the nonlinearity of the system can be predicted as a simple function then this nonlinear function term cab be directly used in the discrete time model. By doing this the number of nonlinear terms in the model can be much less than those of NARMAX model which is widely used nonlinear discrete model. The simulation result shows that the proposed model can estimate the response of the nonlinear vibration system with stick-slip friction very well with less computational effort.

  • PDF

Nonlinear Parameter Identification of Partial Rotor Rub Based on Experiment

  • Choi, Yeon-Sun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.1969-1977
    • /
    • 2004
  • To model and understand the physics of partial rub, a nonlinear rotor model is sought by applying a nonlinear parameter identification technique to the experimental data. The results show that the nonlinear terms of damping and stiffness should be included to model partial rotor rub. Especially, the impact and friction during the contact between rotor and stator are tried to explain with a nonlinear model on the basis of experimental data. The estimated nonlinear model shows good agreements between the numerical and the experimental results in its orbit. Also, the estimated nonlinear model could explain the backward whirling orbit and jump phenomenon, which are the typical phenomena of partial rub.

A Study on the Unstable behavior According to rise-span ratio of dome type space frame (돔형 공간 구조물의 Rise-span 비에 따른 불안정 거동 특성에 관한 연구)

  • Shon, Su-Deok;Kim, Seung-Deog;Kang, Moon-Myung
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.75-82
    • /
    • 2004
  • Many researcher's efforts have made a significant advancement of space frame structure with various portion, and it becomes the most outsanding one of space structures. However, with the characteristics of thin and long term of spacing, the unstable behavior of space structure is shown by initial imperfection, erection procedure or joint, especially space frame structure represents more. This kind of unstable problem could not be set up clearly and there is a huge difference between theory and experiment. Moreover, the discrete structure such as space frame has more complex solution, this it is not easy to derive the formulation of design about space structure. In this space frame structure, the character of rise-span ratio or load mode is represented by the instability of space frame structure with initial imperfection, and snap-through or bifurcation might be the main phenomenon. Therefore, in this study, space frame structure which has a lot of aesthetic effect and profitable for large space covering single layer is dealt. And because that the unstable behavior due to variation of inner force resistance in the elastic range is very important collapse mechanism, I would like to investigate unstable character as a nonlinear behavior with a geometric nonlinear. In order to study the instability. I derive tangent stiffness matrix using finite element method and with displacement incremental method perform nonlinear analysis of unit space structure, star dome and 3-ring star dome considering rise-span $ratio(\mu}$ and load $ratio(R_L)$ for analyzing unstable phenomenon.

  • PDF

Buckling Characteristics of Shallow Sinusoidal Arches by Nonlinear Eigenvalue Analysis (비선형 고유치 해석에 의한 정현형 아치의 좌굴 특성에 관한 연구)

  • 윤태영;김승덕
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.185-192
    • /
    • 2002
  • In this study, we choose the sinusoidal shaped arch with pin-ends subjected to sinusoidal distributed excitation to investigate the fundamental mechanism of the dynamic instability. We derive the nonlinear equations of motion to investigate the instability phenomenon of arch structures and Identify the buckling characteristics of sinusoidal shaped arch structures through the nonlinear eigenvalue analysis with discreted equations of motion by Galerkin's method. We examine that phenomenons which direct snapping and indirect snapping with backbone curves to understand occurrence paths of the dynamic buckling.

  • PDF