• Title/Summary/Keyword: NIPS

Search Result 60, Processing Time 0.026 seconds

Fabrication of Block Copolymer Membranes via SNIPS Process (SNIPS 공정을 이용한 블록공중합체 분리막의 구조 형성에 관한 연구)

  • Woo, Sanghoon;Kim, Jinhee;Lee, Junghyun;Bang, Joona
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.214-219
    • /
    • 2017
  • In this work, we fabricated PS-b-P4VP block copolymer membranes from self-assembly and non-solvent induced phase separation (SNIPS), which combines the block copolymer self-assembly and conventional NIPS process. While previous studies mostly focused on the fabrication of well-defined structures, we systematically examined various processing parameters such as polymer concentration, solvent evaporation duration, solvent composition, and humidity, to optimized the membrane structures. As a result, the morphology of PS-b-P4VP membranes was optimized at a certain polymer concentration in solution and composition of volatile solvent at low humidity conditions, resulting in SNIPS separation membranes with well-defined nanopores on the surface, 75% of membrane porosity, and 18% of surface porosity.

A High-speed Pattern Matching Acceleration System for Network Intrusion Prevention Systems (네트워크 침입방지 시스템을 위한 고속 패턴 매칭 가속 시스템)

  • Kim Sunil
    • The KIPS Transactions:PartA
    • /
    • v.12A no.2 s.92
    • /
    • pp.87-94
    • /
    • 2005
  • Pattern matching is one of critical parts of Network Intrusion Prevention Systems (NIPS) and computationally intensive. To handle a large number of attack signature fattens increasing everyday, a network intrusion prevention system requires a multi pattern matching method that can meet the line speed of packet transfer. In this paper, we analyze Snort, a widely used open source network intrusion prevention/detection system, and its pattern matching characteristics. A multi pattern matching method for NIPS should efficiently handle a large number of patterns with a wide range of pattern lengths and case insensitive patterns matches. It should also be able to process multiple input characters in parallel. We propose a multi pattern matching hardware accelerator based on Shift-OR pattern matching algorithm. We evaluate the performance of the pattern matching accelerator under various assumptions. The performance evaluation shows that the pattern matching accelerator can be more than 80 times faster than the fastest software multi-pattern matching method used in Snort.

An Improved Signature Hashing-based Pattern Matching for High Performance IPS (고성능 침입방지 시스템을 위해 개선한 시그니처 해싱 기반 패턴 매칭 기법)

  • Lee, Young-Sil;Kim, Nack-Hyun;Lee, Hoon-Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.434-437
    • /
    • 2010
  • NIPS(Network Intrusion Prevention System) is in line at the end of the external and internal networks which performed two kinds of action: Signature-based filtering and anomaly detection and prevention-based on self-learning. Among them, a signature-based filtering is well known to defend against attacks. By using signature-based filtering, intrusion prevention system passing a payload of packets is compared with attack patterns which are signature. If match, the packet is discard. However, when there is packet delay, it will increase the required pattern matching time as the number of signature is increasing whenever there is delay occur. Therefore, to ensure the performance of IPS, we needed more efficient pattern matching algorithm for high-performance ISP. To improve the performance of pattern matching the most important part is to reduce the number of comparisons signature rules and the packet whenever the packets arrive. In this paper, we propose an improve signature hashing-based pattern matching method. We use tuple pruning algorithm with Bloom filters, which effectively remove unnecessary tuples. Unlike other existing signature hashing-based IPS, our proposed method to improve the performance of IPS.

  • PDF

Preparation and characterization of PVDF Flat sheet membrane for VMD: Effect of different non-solvent additives and solvents in dope solution

  • Meenakshi Yadav;Sushant Upadhyaya;Kailash Singh
    • Membrane and Water Treatment
    • /
    • v.15 no.4
    • /
    • pp.163-176
    • /
    • 2024
  • Asymmetric flat sheet poly(vinylidene fluoride) (PVDF) membranes were fabricated using the phase inversion technique, employing four distinct solvents with varying solubility power: N, N-dimethylacetamide (DMAc), N, N-dimethylformamide (DMF), Dimethyl sulfoxide (DMSO), and N-Methyl-2-pyrrolidone (NMP). The influence of these solvents on the crystalline properties of the polymers was investigated using X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) to elucidate their role in PVDF polymorphism during membrane formation. Our findings revealed significant variations in membrane crystalline phase due to the dissolution of PVDF in different solvents, with α-polymerization predominant in membranes cast with NMP and DMSO, while DMF and DMAc solvents favored β-type polymerization. Further, various additives including PEG-400, TiO2, LiCl, LiBr, acetone, ethanol, propanol, and water were employed to evaluate their impact on membrane morphology and properties. Scanning electron microscopy (SEM) and Ultimate testing machine (UTM) were utilized to analyze membrane morphology, while the tensile strength, contact angle, pore size, and porosity were estimated using the sessile drop method, imageJ, and gravimetric method, respectively. Our results demonstrated that all additives exerted influence on membrane morphology and properties depending on their characteristics and interactions with solvents and polymers. Notably, acetone, being volatile, facilitated the formation of a thin PVDF layer on the membrane surface, resulting in a reduced average pore size (0.18㎛). Conversely, LiCl and LiBr acted as pore-forming additives, yielding membranes with distinct pore characteristics and porosity. Moreover, water as a non-solvent additive induced pregelation during the nonsolvent-induced phase separation (NIPS) process, thereby promoting pore formation (53% porosity) and enhancing membrane hydrophobicity (104° contact angle). To evaluate the quality of synthesized membranes, permeate flux ranging from 16.2 L/m2.hr to 27.9 L/m2.hr with a salt rejection rate of 98 %, was evaluated using Vacuum Membrane Distillation (VMD).

Load Balancing Algorithm for Parallel Computing of Design Problem involving Multi-Disciplinary Analysis (다분야통합해석에 기반한 설계문제의 병렬처리를 위한 부하분산알고리즘)

  • Cho, Jae-Suk;Chu, Min-Sik;Song, Yong-Ho;Choi, Dong-Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.327-332
    • /
    • 2007
  • An engineering design problem involving Multi-Disciplinary Analysis(MDA) generally requires a large amounts of CPU time for the entire design process, and therefore Multiple Processing System (MPS) are essential to reduce the completion time. However, when applying conventional parallel processing techniques, all of the CAE S/W required for the MDA should be installed on all the servers making up NIPS because of characteristic of MDA and it would be a great expense in CAE S/W licenses. To solve this problem, we propose a Weight-based Multiqueue Load Balancing algorithm for a heterogeneous MPS where performance of servers and CAE S/W installed on each server are different of each other. To validate the performance, a computational experiments comparing the First Come First Serve algorithm and our proposed algorithm was accomplished.

  • PDF

A High-speed Packet Filtering System Architecture in Signature-based Network Intrusion Prevention (시그내쳐 기반의 네트워크 침입 방지에서 고속의 패킷 필터링을 위한 시스템 구조)

  • Kim, Dae-Young;Kim, Sun-Il;Lee, Jun-Yong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.2
    • /
    • pp.73-83
    • /
    • 2007
  • In network intrusion prevention, attack packets are detected and filtered out based on their attack signatures. Pattern matching is extensively used to find attack signatures and the most time-consuming execution part of Network Intrusion Prevention Systems(NIPS). Pattern matching is usually accelerated by hardware and should be performed at wire speed in NIPS. However, that alone is not good enough. First, pattern matching hardware should be able to generate sufficient pattern match information including the pattern index number and the location of the match found at wire speed. Second, it should support pattern grouping to reduce unnecessary pattern matches. Third, it should always have a constant worst-case performance even if the number of patterns is increased. Finally it should be able to update patterns in a few minutes or seconds without stopping its operations, We propose a system architecture to meet the above requirement. The system architecture can process multiple pattern characters in parallel and employs a pipeline architecture to achieve high speed. Using Xilinx FPGA simulation, we show that the new system stales well to achieve a high speed oner 10Gbps and satisfies all of the above requirements.

Fabrication of Polysulfone Hollow Fiber Membranes for N2/NF3 Separation (N2/NF3 분리용 폴리썰폰 중공사막 제조 연구)

  • Lim, Min Su;Kim, Seong-Joong;Kang, Ha Sung;Park, Ho Bum;Nam, Seung Eun;Park, Ho Sik;Lee, Pyung Soo;Park, You In
    • Membrane Journal
    • /
    • v.26 no.1
    • /
    • pp.76-85
    • /
    • 2016
  • Fabrication of polysulfone (PSf) hollow fiber membranes was investigated for the separation of $N_2/NF_3$ gas mixtures, which are emitted from the display and the semiconductor industries. A combination of the non-solvent induced phase separation (NIPS) and the vapor-induced phase separation (VIPS) technique was applied to develop high flux hollow fiber membranes. Thin polymer layers were further coated onto the surface of the hollow fiber membranes by using polydimethylsiloxiane (PDMS) or Teflon AF1600(R), which contributes to improve the $N_2/NF_3$ selectivity. The $N_2/NF_3$ separation performances of our PSf hollow fiber membranes were determined by the intrinsic properties of coating materials. Especially, the PSf hollow fiber membrane coated with Teflon AF 1600(R) exhibited a higher $N_2/NF_3$ selectivity (> 14) with a slightly lower $N_2$ permeance (4.5 GPU), as compared to the commercial PSf counterparts. This feature provides a good potential as a membrane structure to separate $N_2/NF_3$.

The effect of oral breast milk on pain response of the neonates during heel lancing (모유경구투여가 발뒤꿈치 천자 시 신생아의 통증반응에 미치는 효과)

  • Kim, Kyunghwa;Park, Youngim;Kim, Taeim
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.1
    • /
    • pp.203-215
    • /
    • 2016
  • This study was performed in order to investigate the effect of breast milk on pain relief in newborn during heel lancing. Nonequivalent control group pretest-posttest design by double blinded experiment was used. 50 neonates were randomized to receive breast milk (experimental group, n=25) or no treatment (control group, n=25) before undergoing heel lancing. Informed consent was obtained from parents of 50 neonates. Neonatal infant pain scale (NIPS), respiration rate, heart rate, oxygen saturation, and crying duration were used to assess subjects' pain reaction. Data were analyzed using SPSS 18.0. The experimental and control group showed a statistically significant differences in NIPS score (F=28.89, p<.001), heart rate (F=14.03, p<.001), respiration rate (F=4.79, p=.001), oxygen saturation (F=2.69, p=.027), and crying duration (t=-8.78, p <.001) at each time points (during heel lancing, right after heel lancing, 1, 2, 3 minutes after heel lancing). The result suggest that oral administration of expressed breast milk is safe and natural agents for reducing procedural pain of neonates. Another clinical trial study with more samples is recommended.

Preparation and Characteristics of P(AN-co-MA) Membrane Imprinted with Lysozyme Molecules (라이소자임 분자각인 P(AN-co-MA) 막의 제조와 특성)

  • Min, Kyoung Won;Yoo, Anna;Youm, Kyung Ho
    • Membrane Journal
    • /
    • v.31 no.3
    • /
    • pp.219-227
    • /
    • 2021
  • Molecularly imprinted membrane (MIM) is a porous polymer membrane incorporating with the molecular recognizing sites. In this study, the supporting P(AN-co-MA) asymmetric membrane was prepared by nonsolvent induced phase separation (NIPS) method. And then, MIM with lysozyme template sites was prepared using the surface imprinting method on the P(AN-co-MA) asymmetric membrane introducing a photoactive iniferter and then photo-grafting. The P(AN-co-MA) asymmetric membrane was modified with 3-chloropropyltrimethoxysilane and dithiocarbamate as a photoactive iniferter. To prepare a lysozyme imprinted membrane, the modified P(AN-co-MA) membrane was copolymerized with acrylamide as a functional momomer, N,N'-methylene bisacrylamide as a crosslinker and lysozyme as a template in the UV irradiation environment. The lysozyme imprinted MIM was analyzed by using SEM, FT-IR and EDS measurements. Its results confirm that all the P(AN-co-MA) membranes have an asymmetric structure and the iniferter group is successfully introduced on the membrane surface. The process parameters were adjusted to obtain MIM having the excellent lysozyme adsorption. The maximum lysozyme adsorption capacity reaches at 2.7 mg/g, which is 13 times higher than that of the non imprinted membrane (NIM). The permselective membrane filtration experiments of ovalbumin to lysozyme show that the P(AN-co-MA) MIM preferentially bounds a greater amount of lysozyme.

Preparation and Properties of Hollow Fiber Membrane for CO2/H2 Separation (이산화탄소/수소 분리용 중공사형 기체분리막의 제조 및 특성)

  • Hyung Chul Koh;Mi-jin Jeon;Sang-Chul Jung;Yong-Woo Jeon
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.222-232
    • /
    • 2023
  • In this study, a hollow fiber support membrane was prepared by a non-solvent induced phase separation (NIPS) method using a polysulfone (PSf). The prepared hollow fiber support membrane was coated with PDMS and Pebax to prepare a hollow fiber composite membrane. The prepared composite membrane was measured for permeance and selectivity for pure CO2, H2, O2 and N2. Gas separation performance of the module having the highest selectivity (CO2/H2) among the prepared composite membrane modules was measured according to the change in stage cut using simulated gas. The composition of the simulated gas used at this time was 70% CO2 and 30% H2. In the 1 stage experiment, it was possible to obtain values of about 60% of H2 concentration and 12% of H2 recovery. In order to overcome the low H2 concentration and recovery, 2 stage serial test was performed, and through this, it was possible to achieve 70% H2 concentration and 70% recovery. Through this, it was possible to derive a separation process configuration for CO2/H2 separation.