DOI QR코드

DOI QR Code

N2/NF3 분리용 폴리썰폰 중공사막 제조 연구

Fabrication of Polysulfone Hollow Fiber Membranes for N2/NF3 Separation

  • 임민수 (한국화학연구원 그린화학소재연구본부 분리막연구센터) ;
  • 김성중 (한국화학연구원 그린화학소재연구본부 분리막연구센터) ;
  • 강하성 (한국화학연구원 그린화학소재연구본부 분리막연구센터) ;
  • 박호범 (한양대학교 에너지공학과) ;
  • 남승은 (한국화학연구원 그린화학소재연구본부 분리막연구센터) ;
  • 박호식 (한국화학연구원 그린화학소재연구본부 분리막연구센터) ;
  • 이평수 (한국화학연구원 그린화학소재연구본부 분리막연구센터) ;
  • 박유인 (한국화학연구원 그린화학소재연구본부 분리막연구센터)
  • Lim, Min Su (Center for Membrane, Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Seong-Joong (Center for Membrane, Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kang, Ha Sung (Center for Membrane, Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Park, Ho Bum (Department of Energy Engineering Hanyang University) ;
  • Nam, Seung Eun (Center for Membrane, Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Park, Ho Sik (Center for Membrane, Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Pyung Soo (Center for Membrane, Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Park, You In (Center for Membrane, Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • 투고 : 2016.02.15
  • 심사 : 2016.02.27
  • 발행 : 2016.02.29

초록

반도체 및 디스플레이 공정에서 배출되는 $N_2/NF_3$ 혼합 가스 분리를 위한 폴리썰폰 중공사막 제조 연구를 수행하였다. 먼저 non-solvent induced phase separation (NIPS)와 vapor induced phase separation (VIPS) 혼합 공정을 이용하여 기체투과성이 높은 고분자 중공사막을 제조하였다. 제조된 중공사막 표면에 PDMS(polydimethylsiloxiane)와 Teflon AF1600(R) 고분자 소재를 이용하여 얇은 박막을 추가적으로 코팅하는 방법으로 기체 분리막을 완성하였다. 제조된 분리막은 코팅된 고분자 소재의 기체 분리 특성에 따라 상이한 $N_2/NF_3$ 분리 성능을 보여주었다. 특히 Teflon AF1600(R) 이 코팅된 중공사막의 경우 $N_2/NF_3$ 분리 성능(> 14)을 보여주었고, $N_2$ 투과도는 4.5 GPU를 나타내었다. 상용 폴리썰폰 막과 비교해 볼 때, 투과도는 약간 감소하였지만 기체 선택도는 크게 증가하였다. 이런 특징은 $N_2/NF_3$를 분리하는 분리막 구조로써 큰 가능성을 지니는 것으로 판단된다.

Fabrication of polysulfone (PSf) hollow fiber membranes was investigated for the separation of $N_2/NF_3$ gas mixtures, which are emitted from the display and the semiconductor industries. A combination of the non-solvent induced phase separation (NIPS) and the vapor-induced phase separation (VIPS) technique was applied to develop high flux hollow fiber membranes. Thin polymer layers were further coated onto the surface of the hollow fiber membranes by using polydimethylsiloxiane (PDMS) or Teflon AF1600(R), which contributes to improve the $N_2/NF_3$ selectivity. The $N_2/NF_3$ separation performances of our PSf hollow fiber membranes were determined by the intrinsic properties of coating materials. Especially, the PSf hollow fiber membrane coated with Teflon AF 1600(R) exhibited a higher $N_2/NF_3$ selectivity (> 14) with a slightly lower $N_2$ permeance (4.5 GPU), as compared to the commercial PSf counterparts. This feature provides a good potential as a membrane structure to separate $N_2/NF_3$.

키워드

참고문헌

  1. M. Delfino, B. C. Chung, W. Tsai, S. Salimian, D. P. Favreau, and S. M. Merchant, "X‐ray photoemission analysis and electrical contact properties of NF3 plasma cleaned Si surfaces", Journal of Applied Physics, 72, 3718 (1992). https://doi.org/10.1063/1.352320
  2. S.-E. Nam, A. Park, and Y.-I. Park, "Separation and recovery of f-gases", Membr. J., 23, 189 (2013).
  3. http://www.industrytoday.co.uk/market-research-industry-today/nitrogen-trifluoride-nf3-market-will-re flect-significant-growth-prospects-during-2014---2020/45304.
  4. http://www.whatech.com/market-research/materials-chemicals/115729-learn-details-of-the-nitrogen-trifluorideand-fluorine-gas-market-size-share-and-forecasts-to-2020.
  5. K. Kunihiko, F. Tatsuo, F. Shizuichi, and S. Manabu, "Study of ,$CF_4, $C_2F_6$, $SF_6$ and $NF_3$ decomposition characteristics and etching performance in plasma state", Japanese Journal of Applied Physics, 36, 5724 (1997). https://doi.org/10.1143/JJAP.36.5724
  6. M. Carta, R. Malpass-Evans, M. Croad, Y. Rogan, J. C. Jansen, P. Bernardo, F. Bazzarelli, and N. B. McKeown, "An efficient polymer molecular sieve for membrane gas separations", Science, 339, 303 (2013). https://doi.org/10.1126/science.1228032
  7. P. Chiesa, S. Campanari, and G. Manzolini, "$CO_2$ cryogenic separation from combined cycles integrated with molten carbonate fuel cells", International Journal of Hydrogen Energy, 36, 10355 (2011). https://doi.org/10.1016/j.ijhydene.2010.09.068
  8. R. B. Eldridge, "Olefin/paraffin separation technology:a review", Industrial & Engineering Chemistry Research, 32, 2208 (1993). https://doi.org/10.1021/ie00022a002
  9. P. Kowalczyk, P. A. Gauden, and A. P. Terzyk, "Cryogenic separation of hydrogen isotopes in single-walled carbon and boron-nitride nanotubes: Insight into the mechanism of equilibrium quantum sieving in quasi-one-dimensional pores", The Journal of Physical Chemistry B, 112, 8275 (2008). https://doi.org/10.1021/jp800735k
  10. Q. Min Wang, D. Shen, M. Bülow, M. Ling Lau, S. Deng, F. R. Fitch, N. O. Lemcoff, and J. Semanscin, "Metallo-organic molecular sieve for gas separation and purification", Microporous and Mesoporous Materials, 55, 217 (2002). https://doi.org/10.1016/S1387-1811(02)00405-5
  11. S. Sircar, T. C. Golden, and M. B. Rao, "Activated carbon for gas separation and storage", Carbon, 34, 1 (1996). https://doi.org/10.1016/0008-6223(95)00128-X
  12. J. H. Park, D. J. Kim, and S. Y. Nam, "Characterization and preparation of PEG-polyimide copolymer asymmetric flat sheet membranes for carbon dioxide separation", Membr. J., 25, 547 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.6.547
  13. P. van de Witte, P. J. Dijkstra, J. W. A. van den Berg, and J. Feijen, "Phase separation processes in polymer solutions in relation to membrane formation", J. Membr. Sci., 117, 1 (1996). https://doi.org/10.1016/0376-7388(96)00088-9
  14. G. R. Guillen, Y. Pan, M. Li, and E. M. V. Hoek, "Preparation and characterization of membranes formed by nonsolvent induced phase separation: A review", Industrial & Engineering Chemistry Research, 50, 3798 (2011). https://doi.org/10.1021/ie101928r
  15. M. Shang, H. Matsuyama, M. Teramoto, D. R. Lloyd, and N. Kubota, "Preparation and membrane performance of poly(ethylene-co-vinyl alcohol) hollow fiber membrane via thermally induced phase separation", Polymer, 44, 7441 (2003). https://doi.org/10.1016/j.polymer.2003.08.033
  16. H. C. Park, Y. P. Kim, H. Y. Kim, and Y. S. Kang, "Membrane formation by water vapor induced phase inversion", J. Membr. Sci., 156, 169 (1999). https://doi.org/10.1016/S0376-7388(98)00359-7
  17. H. A. Tsai, C. Y. Kuo, J. H. Lin, D. M. Wang, A. Deratani, C. Pochat-Bohatier, K. R. Lee, and J. Y. Lai, "Morphology control of polysulfone hollow fiber membranes via water vapor induced phase separation", J. Membr. Sci., 278, 390 (2006). https://doi.org/10.1016/j.memsci.2005.11.029
  18. S.-H. Cho, H.-K. Lee, and T.-B. Kang, "Separation of $H_2/N_2$ gas mixture by PTMSP-PEI and PDMS-PEI composite membranes", Membr. J., 13, 291 (2003).
  19. H. Kim, M. Lee, W. Park, S. Lee, H. Lee, and S. Lee, "Permeation properties of single gases ($N_2,\, O_2, \,SF_6, \,CF_4$) through PDMS and PEBAX membranes", Membr. J., 22, 201 (2012).
  20. A. F. Ismail, I. R. Dunkin, S. L. Gallivan, and S. J. Shilton, "Production of super selective polysulfone hollow fiber membranes for gas separation", Polymer, 40, 6499 (1999). https://doi.org/10.1016/S0032-3861(98)00862-3
  21. D. Wang, K. Li, and W. K. Teo, "Polyethersulfone hollow fiber gas separation membranes prepared from NMP/alcohol solvent systems", J. Membr. Sci., 115, 85 (1996). https://doi.org/10.1016/0376-7388(95)00312-6
  22. L. S. White, T. A. Blinka, H. A. Kloczewski, and I. F. Wang, "Properties of a polyimide gas separation membrane in natural gas streams", J. Membr. Sci., 103, 73 (1995). https://doi.org/10.1016/0376-7388(94)00313-N
  23. A. F. Ismail and S. J. Shilton, "Polysulfone gas separation hollow fiber membranes with enhanced selectivity", J. Membr. Sci., 139, 285 (1998). https://doi.org/10.1016/S0376-7388(97)00331-1
  24. H. Y. Hwang, S. Y. Nam, H. C. Koh, S. Y. Ha, G. Barbieri, and E. Drioli, "The effect of operating conditions on the performance of hollow fiber membrane modules for $CO_2/N_2$ separation", Journal of Industrial and Engineering Chemistry, 18, 205 (2012). https://doi.org/10.1016/j.jiec.2011.11.021
  25. S. Lee, J. S. Lee, M. Lee, J.-W. Choi, S. Kim, and S. Lee, "Separation of sulfur hexafluoride (SF6) from ternary gas mixtures using commercial polysulfone (PSf) hollow fiber membranes", J. Membr. Sci., 452, 311 (2014). https://doi.org/10.1016/j.memsci.2013.10.044
  26. C. Cao, T.-S. Chung, S. B. Chen, and Z. Dong, "The study of elongation and shear rates in spinning process and its effect on gas separation performance of Poly(ether sulfone) (PES) hollow fiber membranes", Chemical Engineering Science, 59, 1053 (2004). https://doi.org/10.1016/j.ces.2003.10.023
  27. T.-S. Chung, W.-H. Lin, and R. H. Vora, "The effect of shear rates on gas separation performance of 6FDA-durene polyimide hollow fibers", J. Membr. Sci., 167, 55 (2000). https://doi.org/10.1016/S0376-7388(99)00278-1
  28. O. M. Ekiner and G. Vassilatos, "Polyaramide hollow fibers for H2/CH4 separation: II. Spinning and properties", J. Membr. Sci., 186, 71 (2001). https://doi.org/10.1016/S0376-7388(00)00665-7
  29. S. J. Shilton, A. F. Ismail, P. J. Gough, I. R. Dunkin, and S. L. Gallivan, "Molecular orientation and the performance of synthetic polymeric membranes for gas separation", Polymer, 38, 2215 (1997). https://doi.org/10.1016/S0032-3861(96)00753-7
  30. T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman, and I. Pinnau, "Gas sorption, diffusion, and permeation in poly(dimethylsiloxane)", Journal of Polymer Science Part B: Polymer Physics, 38, 415 (2000). https://doi.org/10.1002/(SICI)1099-0488(20000201)38:3<415::AID-POLB8>3.0.CO;2-Z
  31. D. Hofmann, L. Fritz, J. Ulbrich, C. Schepers, and M. Bohning, "Detailed-atomistic molecular modeling of small molecule diffusion and solution processes in polymeric membrane materials", Macromolecular Theory and Simulations, 9, 293 (2000). https://doi.org/10.1002/1521-3919(20000701)9:6<293::AID-MATS293>3.0.CO;2-1
  32. J. G. Wijmans and R. W. Baker, "The solution-diffusion model: A review", J. Membr. Sci., 107, 1 (1995). https://doi.org/10.1016/0376-7388(95)00102-I
  33. D. J. Branken, H. M. Krieg, J. P. le Roux, and G. Lachmann, "Separation of $NF_3$ and $CF_4$ using amorphous glassy perfluoropolymer Teflon AF and Hyflon AD60 membranes", J. Membr. Sci., 462, 75 (2014). https://doi.org/10.1016/j.memsci.2014.03.033
  34. S. Park, W. R. Kang, H. T. Kwon, S. Kim, M. Seo, J. Bang, S. H. Lee, H. K. Jeong, and J. S. Lee, "The polymeric upper bound for $N_2/NF_3$separation and beyond; ZIF-8 containing mixed matrix membranes", J. Membr. Sci., 486, 29 (2015). https://doi.org/10.1016/j.memsci.2015.03.030