DOI QR코드

DOI QR Code

Preparation and characterization of PVDF Flat sheet membrane for VMD: Effect of different non-solvent additives and solvents in dope solution

  • Meenakshi Yadav (Department of Chemical Engineering, Malaviya National Institute of Technology Jaipur) ;
  • Sushant Upadhyaya (Department of Chemical Engineering, Malaviya National Institute of Technology Jaipur) ;
  • Kailash Singh (Department of Chemical Engineering, Malaviya National Institute of Technology Jaipur)
  • Received : 2024.07.03
  • Accepted : 2024.09.05
  • Published : 2024.10.25

Abstract

Asymmetric flat sheet poly(vinylidene fluoride) (PVDF) membranes were fabricated using the phase inversion technique, employing four distinct solvents with varying solubility power: N, N-dimethylacetamide (DMAc), N, N-dimethylformamide (DMF), Dimethyl sulfoxide (DMSO), and N-Methyl-2-pyrrolidone (NMP). The influence of these solvents on the crystalline properties of the polymers was investigated using X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) to elucidate their role in PVDF polymorphism during membrane formation. Our findings revealed significant variations in membrane crystalline phase due to the dissolution of PVDF in different solvents, with α-polymerization predominant in membranes cast with NMP and DMSO, while DMF and DMAc solvents favored β-type polymerization. Further, various additives including PEG-400, TiO2, LiCl, LiBr, acetone, ethanol, propanol, and water were employed to evaluate their impact on membrane morphology and properties. Scanning electron microscopy (SEM) and Ultimate testing machine (UTM) were utilized to analyze membrane morphology, while the tensile strength, contact angle, pore size, and porosity were estimated using the sessile drop method, imageJ, and gravimetric method, respectively. Our results demonstrated that all additives exerted influence on membrane morphology and properties depending on their characteristics and interactions with solvents and polymers. Notably, acetone, being volatile, facilitated the formation of a thin PVDF layer on the membrane surface, resulting in a reduced average pore size (0.18㎛). Conversely, LiCl and LiBr acted as pore-forming additives, yielding membranes with distinct pore characteristics and porosity. Moreover, water as a non-solvent additive induced pregelation during the nonsolvent-induced phase separation (NIPS) process, thereby promoting pore formation (53% porosity) and enhancing membrane hydrophobicity (104° contact angle). To evaluate the quality of synthesized membranes, permeate flux ranging from 16.2 L/m2.hr to 27.9 L/m2.hr with a salt rejection rate of 98 %, was evaluated using Vacuum Membrane Distillation (VMD).

Keywords

Acknowledgement

The authors are also extremely grateful to the Material research center (MRC) at MNIT for for all the facilities to determine SEM micrographs, Tensile strength determination.

References

  1. Baghel, R., Kalla, S., Upadhyaya, S., Chaurasia, S.P. and Singh, J. (2017), "Treatment of Sudan III dye from wastewater using vacuum membrane distillation", J. Basic Appl. Eng. Res., 4(3), 237-241.
  2. Chunsheng, F.,Wang, R., Shi, B., Li, G. and Wu, Y. (2006), "Factors affecting pore structure and performance of poly (vinylidene fluoride-co-hexafluoro propylene) asymmetric porous membrane", J. Membr. Sci., 277(1-2), 55-64. https://doi.org/10.1016/j.memsci.2005.10.009.
  3. Diyana, K., Hashim, N., Ong, B., Kakihana, Y., Higa, M. and Matsuyama, H. (2021), "Multiple effect of thermal treatment approach on PVDF membranes: Permeability enhancement and silver nanoparticles immobilization", J. Environ. Chem. Eng., 9(4), 105769. https://doi.org/10.1016/j.jece.2021.105769.
  4. Fernandez, G., Garcia-Payo, L. and Khayet, M. (2014), "Effects of mixed solvents on the structural morphology and membrane distillation performance of PVDF-HFP hollow fiber membranes", J. Membr. Sci., 468, 324-338. https://doi.org/10.1016/j.memsci.2014.06.014.
  5. Hazlina, J., Nik, J., Abdul, A., Ismail, A., Othman,M., Rahman, M., Aziz, F., Yusof, N. and Daud, N. (2021), "Porous polyether sulfone for direct methanol fuel cell applications: Structural analysis", Int. J. Energy Res., 45(2), 2277-2291. https://doi.org/10.1002/er.5921.
  6. Kalla, S. (2020), "Use of membrane distillation for oily wastewater treatment - A review", Biochem. Pharm., 104641. https://doi.org/10.1016/j.jece.2020.104641.
  7. Kuiling, L., Hou, D., Fu, C., Wang, K. and Wang, J.(2019), "Fabrication of PVDF nanofibrous hydrophobic composite membranes reinforced with fabric substrates via electrospinning for membrane distillation desalination", J. Environ. Sci., 75, 277-288. https://doi.org/10.1016/j.jes.2018.04.002.
  8. Lei Du, H., Li, Y., Guo, M., Zhou, J. and Qiao, S. (2023), "Superhydrophobic PVDF membrane formed by crystallization process for direct contact membrane distillation", IScience, 26(5), 106464. https://doi.org/10.1016/j.isci.2023.106464.
  9. Loussif, N. and Orfi, J. (2016), "Comparative study of air gap, direct contact and sweeping gas membrane distillation configurations", Membr. Water Treat., 7(1), 71-86. https://doi.org/10.12989/mwt.2016.7.1.071.
  10. Marek, G. (2011), "Water desalination by membrane distillation", Desalination, 302017. https://doi.org/10.5772/14746.
  11. Phattaranawik, J., Jiraratananon, R. and Fane, A.G. (2003), "Heat transport and membrane distillation coefficients in direct contact membrane distillation", J. Membr. Sci., 212(1-2), 177-193. https://doi.org/10.1016/S0376-7388(02)00498-2.
  12. Rasool, M. and Vankelecom, F.J. (2021), "Preparation of full-bio-based nanofiltration membranes", J. Membr. Sci., 618, 118674. https://doi.org/10.1016/j.memsci.2020.118674.
  13. Sadrzadeh, M. and Bhattacharjee,S. (2013), "Rational design of phase inversion membranes by tailoring thermodynamics and kinetics of casting solution using polymer additives", J. Membr. Sci., 441, 31-44. https://doi.org/10.1016/j.memsci.2013.04.009.
  14. Sajjad, M., Safekordi, A., Tavakolmoghadam, M., Rekabdar, F. and Hemmati, M. (2016), "Comparison of the membrane morphology based on the phase diagram using PVP as an organic additive and TiO2 as an inorganic additive", Polymer, 97, 559-568. https://doi.org/10.1016/j.polymer.2016.05.069.
  15. Shu Yuan, P., Haddad, A., Kumar, A. and Wang, S. (2020), "Brackish water desalination using reverse osmosis and capacitive deionization at the water-energy nexus", Water Res., 183, 116064. https://doi.org/10.1016/j.watres.2020.116064.
  16. Tae, J., Kim, J.,Wang, H., Nicolo, E., Drioli, E. and Lee, Y. (2016), "Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS)", J. Membr. Sci., 514, 250-263. https://doi.org/10.1016/j.memsci.2016.04.069.
  17. Tibi, F., Charfi, A., Cho, J. and Kim, J. (2020), "Fabrication of polymeric membranes for membrane distillation process and application for wastewater treatment : Critical review", Proc. Safe Environ. Protect., 141, 190-201. https://doi.org/10.1016/j.psep.2020.05.026.
  18. Tofighy, M., Mohammadi, T. and Sadeghi, M.H. (2021), "High-flux PVDF/PVP nanocomposite ultrafiltration membrane incorporated with graphene oxide nanoribbones with improved antifouling properties", J. Appl. Polym. Sci., 138(4), 1-15. https://doi.org/10.1002/app.49718.
  19. Wang, J., Zheng, L., Wu, Z., Zhang, Y. and Zhang, X. (2016), "Fabrication of hydrophobic flat sheet and hollow fiber membranes from PVDF and PVDF-CTFE for membrane distillation", J. Membr. Sci., 497, 183-193. https://doi.org/10.1016/j.memsci.2015.09.024.
  20. Wang, X., Chen, D., He, T., Zhou, Y., Tian, L., Wang, Z. and Cui, Z. (2023), "Preparation of lateral flow PVDF membrane via combined vapor- and non-solvent-induced phase separation (V-NIPS)", Membranes, 13(1). https://doi.org/10.3390/membranes13010091.
  21. Yadav, M. and Upadhyay, S. (2023), "Process optimization for fabrication of PVDF-TiO2 hydrophobic membrane using phase inversion method for desalination application using VMD", Mater. Today Proc., 90, 39-50. https://doi.org/10.1016/j.matpr.2023.06.153
  22. Yadav, M., Upadhyay, S., Singh, K., Chaturvedi, T.K. and Vashishtha, M. (2022), "Morphological study of synthesized PVDF membrane using different non-solvents for coagulation", Membr. Water Treat., 13(4), 173. https://doi.org/10.12989/mwt.2022.13.4.173
  23. Yadav, M., Upadhyaya, S. and Singh, K. (2024), "Enhancing the hydrophobicity and surface roughness of synthesized PVDF membrane using evaporation and non-solvent-induced phase separation", Arab. J. Sci. Eng., 49(6), 8189-8200. https://doi.org/10.1007/s13369-024-08726-y.
  24. Yong Soo, K., Kim, K. and Kim, U.(1991), "Asymmetric membrane formation via immersion precipitation method. I. kinetic effect", J. Membr. Sci., 60(2-3), 219-232.
  25. Zhenghui, L., Xiang, J., Hu, X., Cheng, P., Zhang, L., Du, W., Wang, S. and Tang, N. (2021), "Effects of coagulation-bath conditions on polyphenylsulfone ultrafiltration membranes", Chinese J. Chem. Eng., 34, 332-340. https://doi.org/10.1016/j.cjche.2020.11.038.
  26. Zoungrana, A., Zengin, I., Elcik, H., Yesilirmak, D., Karadag, D. and C akmakci, M. (2016), "Arsenic removal from drinking water by direct contact membrane distillation", Membr. Water Treat., 7(3), 241-255. https://doi.org/10.12989/mwt.2016.7.3.241.