• 제목/요약/키워드: NHEJ

검색결과 16건 처리시간 0.024초

The road less traveled: strategies to enhance the frequency of homology-directed repair (HDR) for increased efficiency of CRISPR/Cas-mediated transgenesis

  • Devkota, Sushil
    • BMB Reports
    • /
    • 제51권9호
    • /
    • pp.437-443
    • /
    • 2018
  • Non-homologous end joining (NHEJ), and to a lesser extent, the error-free pathway known as homology-directed repair (HDR) are cellular mechanisms for recovery from double-strand DNA breaks (DSB) induced by RNA-guided programmable nuclease CRISPR/Cas. Since NHEJ is equivalent to using a duck tape to stick two pieces of metals together, the outcome of this repair mechanism is prone to error. Any out-of-frame mutations or premature stop codons resulting from NHEJ repair mechanism are extremely handy for loss-of-function studies. Substitution of a mutation on the genome with the correct exogenous repair DNA requires coordination via an error-free HDR, for targeted transgenesis. However, several practical limitations exist in harnessing the potential of HDR to replace a faulty mutation for therapeutic purposes in all cell types and more so in somatic cells. In germ cells after the DSB, copying occurs from the homologous chromosome, which increases the chances of incorporation of exogenous DNA with some degree of homology into the genome compared with somatic cells where copying from the identical sister chromatid is always preferred. This review summarizes several strategies that have been implemented to increase the frequency of HDR with a focus on somatic cells. It also highlights the limitations of this technology in gene therapy and suggests specific solutions to circumvent those barriers.

DNA 이중나선파손의 수복 과정과 이와 연관된 두경부암 발생 유전자 (PATHWAYS AND GENES OF DNA DOUBLE-STRAND BREAK REPAIR ASSOCIATED WITH HEAD AND NECK CANCER)

  • 오정환;이덕원;류동목
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제35권1호
    • /
    • pp.1-6
    • /
    • 2009
  • DNA double-strand breaks (DSBs) occur commonly in the all living and in cycling cells. They constitute one of the most severe form of DNA damage, because they affect both strand of DNA. DSBs result in cell death or a genetic alterations including deletion, loss of heterozygosity, translocation, and chromosome loss. DSBs arise from endogenous sources like metabolic products and reactive oxygen, and also exogenous factors like ionizing radiation. Defective DNA DSBs can lead to toxicity and large scale sequence rearrangement that can cause cancer and promote premature aging. There are two major pathways for their repair: homologous recombination(HR) and non-homologous end-joining(NHEJ). The HR pathway is a known "error-free" repair mechanism, in which a homologous sister chromatid serves as a template. NHEJ, on the other hand, is a "error-prone" pathway, in which the two termini of the broken DNA molecule are used to form compatible ends that are directly ligated. This review aims to provide a fundamental understanding of how HR and NHEJ pathways operate, cause genome instability, and what kind of genes during the pathways are associated with head and neck cancer.

Evolution of CRISPR towards accurate and efficient mammal genome engineering

  • Ryu, Seuk-Min;Hur, Junseok W;Kim, Kyoungmi
    • BMB Reports
    • /
    • 제52권8호
    • /
    • pp.475-481
    • /
    • 2019
  • The evolution of genome editing technology based on CRISPR (clustered regularly interspaced short palindromic repeats) system has led to a paradigm shift in biological research. CRISPR/Cas9-guide RNA complexes enable rapid and efficient genome editing in mammalian cells. This system induces double-stranded DNA breaks (DSBs) at target sites and most DNA breakages induce mutations as small insertions or deletions (indels) by non-homologous end joining (NHEJ) repair pathway. However, for more precise correction as knock-in or replacement of DNA base pairs, using the homology-directed repair (HDR) pathway is essential. Until now, many trials have greatly enhanced knock-in or substitution efficiency by increasing HDR efficiency, or newly developed methods such as Base Editors (BEs). However, accuracy remains unsatisfactory. In this review, we summarize studies to overcome the limitations of HDR using the CRISPR system and discuss future direction.

Lack of Association Between LIG4 Gene Polymorphisms and the Risk of Breast Cancer: A HuGE Review and Meta-analysis

  • Zhou, Li-Ping;Luan, Hong;Dong, Xi-Hua;Jin, Guo-Jiang;Man, Dong-Liang;Shang, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권7호
    • /
    • pp.3417-3422
    • /
    • 2012
  • Objective: Non-homologous end joining (NHEJ) is one of the pathways of repair of DNA double-strand breaks. A number of genes involved in NHEJ have been implicated as breast cancer susceptibility genes such as LIG4. However, some studies have generated conflicting results. The aim of this Human Genome Epidemiology (HuGE) review and meta-analysis was to investigate association between LIG4 gene polymorphisms in the NHEJ pathway and breast cancer risk. Methods: Studies focusing on the relationship between LIG4 gene polymorphisms and susceptibility to breast cancer were selected from the Pubmed, Cochrane library, Embase, Web of Science, Springerlink, CNKI and CBM databases. Data were extracted by two independent reviewers and the meta-analysis was performed with Review Manager Version 5.1.6 and STATA Version 12.0 software, calculating odds ratios (ORs) with 95% confidence intervals (95%CIs). Results: According to the inclusion criteria, we final included seven studies with a total of 10,321 breast cancer cases and 10,160 healthy controls in the meta-analysis. The results showed no association between LIG4 gene polymorphisms (rs1805386 T>C, rs1805389 C>T, rs1805388 C>T and rs2232641 A>G) and breast cancer risk, suggesting that the mutant situation of these SNPs neither increased nor decreased the risk for breast cancer. In the subgroup analysis by Hardy-Weinberg equilibrium (HWE) and ethnicity, we also found no associations between the variants of LIG4 gene and breast cancer risk among HWE, non-HWE, Caucasians, Asians and Africans. Conclusion: This meta-analysis suggests that there is a lack of any association between LIG4 gene polymorphisms and the risk of breast cancer.

CRISPR as a strong gene editing tool

  • Shen, Shengfu;Loh, Tiing Jen;Shen, Hongling;Zheng, Xuexiu;Shen, Haihong
    • BMB Reports
    • /
    • 제50권1호
    • /
    • pp.20-24
    • /
    • 2017
  • Clustered regularly-interspaced short palindromic repeats (CRISPR) is a new and effective genetic editing tool. CRISPR was initially found in bacteria to protect it from virus invasions. In the first step, specific DNA strands of virus are identified by guide RNA that is composed of crRNA and tracrRNA. Then RNAse III is required for producing crRNA from pre-crRNA. In The second step, a crRNA:tracrRNA:Cas9 complex guides RNase III to cleave target DNA. After cleavage of DNA by CRISPR-Cas9, DNA can be fixed by Non-Homologous End Joining (NHEJ) and Homology Directed Repair (HDR). Whereas NHEJ is simple and random, HDR is much more complex and accurate. Gene editing by CRISPR is able to be applied to various biological field such as agriculture and treating genetic diseases in human.

Ku complex suppresses recombination in the absence of MRX activity during budding yeast meiosis

  • Yun, Hyeseon;Kim, Keunpil
    • BMB Reports
    • /
    • 제52권10호
    • /
    • pp.607-612
    • /
    • 2019
  • During meiosis, programmed double-strand breaks (DSBs) are repaired via recombination pathways that are required for faithful chromosomal segregation and genetic diversity. In meiotic progression, the non-homologous end joining (NHEJ) pathway is suppressed and instead meiotic recombination initiated by nucleolytic resection of DSB ends is the major pathway employed. This requires diverse recombinase proteins and regulatory factors involved in the formation of crossovers (COs) and non-crossovers (NCOs). In mitosis, spontaneous DSBs occurring at the G1 phase are predominantly repaired via NHEJ, mediating the joining of DNA ends. The Ku complex binds to these DSB ends, inhibiting additional DSB resection and mediating end joining with Dnl4, Lif1, and Nej1, which join the Ku complex and DSB ends. Here, we report the role of the Ku complex in DSB repair using a physical analysis of recombination in Saccharomyces cerevisiae during meiosis. We found that the Ku complex is not essential for meiotic progression, DSB formation, joint molecule formation, or CO/NCO formation during normal meiosis. Surprisingly, in the absence of the Ku complex and functional Mre11-Rad50-Xrs2 (MRX) complex, a large portion of meiotic DSBs was repaired via the recombination pathway to form COs and NCOs. Our data suggested that Ku complex prevents meiotic recombination in the elimination of MRX activity.

Development of CRISPR/Cas9 system for targeted DNA modifications and recent improvements in modification efficiency and specificity

  • Shin, Juhyun;Oh, Jae-Wook
    • BMB Reports
    • /
    • 제53권7호
    • /
    • pp.341-348
    • /
    • 2020
  • The targeted nuclease clustered, regularly interspaced short palindromic repeats/CRISPR-associated proteins (CRISPR/Cas) system has recently emerged as a prominent gene manipulation method. Because of its ease in programming targeted DNA/protein binding through RNA in a vast range of organisms, this prokaryotic defense system is a versatile tool with many applications in the research field as well as high potential in agricultural and clinical improvements. This review will present a brief history that led to its discovery and adaptation. We also present some of its restrictions, and modifications that have been performed to overcome such restrictions, focusing specifically on the most common CRISPR/Cas9 mediated non-homologous end joint repair.

Association Between XRCC5, 6 and 7 Gene Polymorphisms and the Risk of Breast Cancer: A HuGE Review and Meta-analysis

  • Zhou, Li-Ping;Luan, Hong;Dong, Xi-Hua;Jin, Guo-Jiang;Man, Dong-Liang;Shang, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권8호
    • /
    • pp.3637-3643
    • /
    • 2012
  • Objective: Non-homologous end joining (NHEJ) is a pathway for repairing DNA double-strand breaks. Recent publications indicated that XRCC5, XRCC6 and XRCC7 genes may participate in the pathogenesis of breast cancer. The aim of this Human Genome Epidemiology (HuGE) review and meta-analysis was to investigate associations between XRCC5, XRCC6 and XRCC7 genetic polymorphisms in the NHEJ pathway and breast cancer risk. Methods: Studies focusing on the relationship between genetic polymorphisms in XRCC5, XRCC6 and XRCC7 genes and susceptibility to breast cancer were selected from the Pubmed, Cochrane library, Embase, Web of Science, Springerlink, CNKI and CBM databases. Data were extracted by two independent reviewers. The meta-analysis was performed with Review Manager Version 5.1.6 and STATA Version 12.0 software. The odds ratio (OR) with 95% confidence interval (95%CI) was calculated based on the extracted data. Results: According to the inclusion criteria, we final included seven studies with a total of 2,864 breast cancer cases and 3,060 healthy controls. Meta-analysis results showed that rs3835 (G>A) and rs828907 (G>T) in XRCC5 gene, and rs132793 (G>A) in XRCC6 gene might increase the risk of breast cancer, while rs132788 G>T and rs6002421 (A>G) might be protective factors. However, there was no relationship between XRCC7 genetic polymorphisms and the risk of breast cancer. Conclusion: This meta-analysis suggests that the rs3835 G>A and rs828907 G>T in XRCC5 gene, rs6002421 (A>G), rs132788 (G>T) and rs132793 (G>A) in XRCC6 gene might be risk factors for breast cancer, while the rs132788 (G>T) and rs6002421 (A>G) in XRCC6 gene might be protective.

DNA damage repair is suppressed in porcine aged oocytes

  • Lin, Tao;Sun, Ling;Lee, Jae Eun;Kim, So Yeon;Jin, Dong Il
    • Journal of Animal Science and Technology
    • /
    • 제63권5호
    • /
    • pp.984-997
    • /
    • 2021
  • This study sought to evaluate DNA damage and repair in porcine postovulatory aged oocytes. The DNA damage response, which was assessed by H2A.X expression, increased in porcine aged oocytes over time. However, the aged oocytes exhibited a significant decrease in the expression of RAD51, which reflects the DNA damage repair capacity. Further experiments suggested that the DNA repair ability was suppressed by the downregulation of genes involved in the homologous recombination (HR) and nonhomologous end-joining (NHEJ) pathways. The expression levels of the cell cycle checkpoint genes, CHEK1 and CHEK2, were upregulated in porcine aged oocytes in response to induced DNA damage. Immunofluorescence results revealed that the expression level of H3K79me2 was significantly lower in porcine aged oocytes than in control oocytes. In addition, embryo quality was significantly reduced in aged oocytes, as assessed by measuring the cell proliferation capacity. Our results provide evidence that DNA damage is increased and the DNA repair ability is suppressed in porcine aged oocytes. These findings increase our understanding of the events that occur during postovulatory oocyte aging.