Browse > Article
http://dx.doi.org/10.5483/BMBRep.2019.52.8.149

Evolution of CRISPR towards accurate and efficient mammal genome engineering  

Ryu, Seuk-Min (Molecular Recognition Research Center, Korea Institute of Science and Technology)
Hur, Junseok W (Department of Neurosurgery, Korea University College of Medicine)
Kim, Kyoungmi (Department of Biomedical Sciences and Department of Physiology, Korea University College of Medicine)
Publication Information
BMB Reports / v.52, no.8, 2019 , pp. 475-481 More about this Journal
Abstract
The evolution of genome editing technology based on CRISPR (clustered regularly interspaced short palindromic repeats) system has led to a paradigm shift in biological research. CRISPR/Cas9-guide RNA complexes enable rapid and efficient genome editing in mammalian cells. This system induces double-stranded DNA breaks (DSBs) at target sites and most DNA breakages induce mutations as small insertions or deletions (indels) by non-homologous end joining (NHEJ) repair pathway. However, for more precise correction as knock-in or replacement of DNA base pairs, using the homology-directed repair (HDR) pathway is essential. Until now, many trials have greatly enhanced knock-in or substitution efficiency by increasing HDR efficiency, or newly developed methods such as Base Editors (BEs). However, accuracy remains unsatisfactory. In this review, we summarize studies to overcome the limitations of HDR using the CRISPR system and discuss future direction.
Keywords
CRISPR; DNA double-strand break; Genome editing; HDR; NHEJ;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Liang F, Han M, Romanienko PJ and Jasin M (1998) Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci U S A 95, 5172-5177   DOI
2 Kakarougkas A and Jeggo PA (2014) DNA DSB repair pathway choice: an orchestrated handover mechanism. Br J Radiol 87, 20130685   DOI
3 Lindahl T (1982) DNA repair enzymes. Annu Rev Biochem 51, 61-87   DOI
4 Steentoft C, Vakhrushev SY, Vester-Christensen MB et al (2011) Mining the O-glycoproteome using zinc-finger nuclease-glycoengineered SimpleCell lines. Nat Methods 8, 977-982   DOI
5 Kim Y, Kweon J, Kim A et al (2013) A library of TAL effector nucleases spanning the human genome. Nat Biotechnol 31, 251-258   DOI
6 Lehner K, Mudrak SV, Minesinger BK and Jinks-Robertson S (2012) Frameshift mutagenesis: the roles of primertemplate misalignment and the nonhomologous end-joining pathway in Saccharomyces cerevisiae. Genetics 190, 501-510   DOI
7 Smithies O, Gregg RG, Boggs SS, Koralewski MA and Kucherlapati RS (1985) Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 317, 230-234   DOI
8 Zelensky AN, Schimmel J, Kool H, Kanaar R and Tijsterman M (2017) Inactivation of Pol theta and C-NHEJ eliminates off-target integration of exogenous DNA. Nat Commun 8, 66   DOI
9 Schimmel J, Kool H, van Schendel R and Tijsterman M (2017) Mutational signatures of non-homologous and polymerase theta-mediated end-joining in embryonic stem cells. EMBO J 36, 3634-3649   DOI
10 Mateos-Gomez PA, Kent T, Deng SK et al (2017) The helicase domain of Poltheta counteracts RPA to promote alt-NHEJ. Nat Struct Mol Biol 24, 1116-1123   DOI
11 Gaudelli NM, Komor AC, Rees HA et al (2017) Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464-471   DOI
12 Kim YB, Komor AC, Levy JM, Packer MS, Zhao KT and Liu DR (2017) Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol 35, 371-376   DOI
13 Banno S, Nishida K, Arazoe T, Mitsunobu H and Kondo A (2018) Deaminase-mediated multiplex genome editing in Escherichia coli. Nat Microbiol 3, 423-429   DOI
14 Hu JH, Miller SM, Geurts MH et al (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57-63   DOI
15 Rees HA and Liu DR (2018) Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 19, 770-788   DOI
16 Kim JS (2018) Precision genome engineering through adenine and cytosine base editing. Nat Plants 4, 148-151   DOI
17 Komor AC, Kim YB, Packer MS, Zuris JA and Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424   DOI
18 Nishida K, Arazoe T, Yachie N et al (2016) Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729   DOI
19 Kim K, Ryu SM, Kim ST et al (2017) Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol 35, 435-437   DOI
20 Ryu SM, Koo T, Kim K et al (2018) Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat Biotechnol 36, 536-539   DOI
21 Liang P, Ding C, Sun H et al (2017) Correction of beta-thalassemia mutant by base editor in human embryos. Protein Cell 8, 811-822   DOI
22 Liu Z, Chen M, Chen S et al (2018) Highly efficient RNA-guided base editing in rabbit. Nat Commun 9, 2717   DOI
23 Yeh WH, Chiang H, Rees HA, Edge ASB and Liu DR (2018) In vivo base editing of post-mitotic sensory cells. Nat Commun 9, 2184   DOI
24 Chang HHY, Pannunzio NR, Adachi N and Lieber MR (2017) Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol 18, 495-506   DOI
25 Quadros RM, Miura H, Harms DW et al (2017) Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biol 18, 92   DOI
26 Cox DB, Platt RJ and Zhang F (2015) Therapeutic genome editing: prospects and challenges. Nat Med 21, 121-131   DOI
27 Renaud JB, Boix C, Charpentier M et al (2016) Improved Genome Editing Efficiency and Flexibility Using Modified Oligonucleotides with TALEN and CRISPR-Cas9 Nucleases. Cell Rep 14, 2263-2272   DOI
28 Paquet D, Kwart D, Chen A et al (2016) Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533, 125-129   DOI
29 Gu B, Posfai E and Rossant J (2018) Efficient generation of targeted large insertions by microinjection into two-cellstage mouse embryos. Nat Biotechnol 36, 632-637   DOI
30 Aird EJ, Lovendahl KN, St Martin A, Harris RS and Gordon WR (2018) Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template. Commun Biol 1, 54   DOI
31 Nakade S, Tsubota T, Sakane Y et al (2014) Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun 5, 5560   DOI
32 Sakuma T, Nakade S, Sakane Y, Suzuki KT and Yamamoto T (2016) MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc 11, 118-133   DOI
33 Yao X, Wang X, Liu J et al (2017) CRISPR/Cas9 - Mediated Precise Targeted Integration In Vivo Using a Double Cut Donor with Short Homology Arms. EBioMedicine 20, 19-26   DOI
34 Horvath P and Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327, 167-170   DOI
35 Wang H, Yang H, Shivalila CS et al (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910-918   DOI
36 Yang H, Wang H, Shivalila CS, Cheng AW, Shi L and Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154, 1370-1379   DOI
37 Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712   DOI
38 Yao X, Zhang M, Wang X et al (2018) Tild-CRISPR Allows for Efficient and Precise Gene Knockin in Mouse and Human Cells. Dev Cell 45, 526-536 e525   DOI
39 Lee SH, Kim S and Hur JK (2018) CRISPR and Target-Specific DNA Endonucleases for Efficient DNA Knock-in in Eukaryotic Genomes. Mol Cells 41, 943-952   DOI
40 Yao X, Wang X, Hu X et al (2017) Homology-mediated end joining-based targeted integration using CRISPR/Cas9. Cell Res 27, 801-814   DOI
41 Shrivastav M, De Haro LP and Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18, 134-147   DOI
42 Allen C, Halbrook J and Nickoloff JA (2003) Interactive competition between homologous recombination and non-homologous end joining. Mol Cancer Res 1, 913-920
43 Hartlerode AJ and Scully R (2009) Mechanisms of double-strand break repair in somatic mammalian cells. Biochem J 423, 157-168   DOI
44 Ceccaldi R, Rondinelli B and D'Andrea AD (2016) Repair Pathway Choices and Consequences at the Double-Strand Break. Trends Cell Biol 26, 52-64   DOI
45 Pannunzio NR, Watanabe G and Lieber MR (2018) Nonhomologous DNA end-joining for repair of DNA double-strand breaks. J Biol Chem 293, 10512-10523   DOI
46 Shibata A (2017) Regulation of repair pathway choice at two-ended DNA double-strand breaks. Mutat Res 803-805, 51-55   DOI
47 Chu VT, Weber T, Wefers B et al (2015) Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33, 543-548   DOI
48 Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823   DOI
49 Bhaya D, Davison M and Barrangou R (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45, 273-297   DOI
50 Cho SW, Kim S, Kim JM and Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31, 230-232   DOI
51 Jiang W, Bikard D, Cox D, Zhang F and Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31, 233-239   DOI
52 Woo JW, Kim J, Kwon SI et al (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33, 1162-1164   DOI
53 Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR and Ploegh HL (2015) Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 33, 538-542   DOI
54 Yu C, Liu Y, Ma T et al (2015) Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell 16, 142-147   DOI
55 Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821   DOI
56 Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339, 823-826   DOI
57 Hsu PD, Lander ES and Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262-1278   DOI
58 Amoasii L, Hildyard JCW, Li H et al (2018) Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science 362, 86-91   DOI
59 Terns MP and Terns RM (2011) CRISPR-based adaptive immune systems. Curr Opin Microbiol 14, 321-327   DOI
60 Niu D, Wei HJ, Lin L et al (2017) Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 357, 1303-1307   DOI
61 Li G, Zhang X, Zhong C et al (2017) Small molecules enhance CRISPR/Cas9-mediated homology-directed genome editing in primary cells. Sci Rep 7, 8943   DOI
62 Orthwein A, Fradet-Turcotte A, Noordermeer SM et al (2014) Mitosis inhibits DNA double-strand break repair to guard against telomere fusions. Science 344, 189-193   DOI
63 Heyer WD, Ehmsen KT and Liu J (2010) Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44, 113-139   DOI
64 Lin S, Staahl BT, Alla RK and Doudna JA (2014) Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife 3, e04766   DOI
65 Yang D, Scavuzzo MA, Chmielowiec J et al (2016) Enrichment of G2/M cell cycle phase in human pluripotent stem cells enhances HDR-mediated gene repair with customizable endonucleases. Sci Rep 6, 21264   DOI
66 Canny MD, Moatti N, Wan LCK et al (2018) Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency. Nat Biotechnol 36, 95-102   DOI
67 Song J, Yang D, Xu J, Zhu T, Chen YE and Zhang J (2016) RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat Commun 7, 10548   DOI
68 Lee HK, Willi M, Miller SM et al (2018) Targeting fidelity of adenine and cytosine base editors in mouse embryos. Nat Commun 9, 4804   DOI
69 Riesenberg S and Maricic T (2018) Targeting repair pathways with small molecules increases precise genome editing in pluripotent stem cells. Nat Commun 9, 2164   DOI
70 Liu Z, Lu Z, Yang G et al (2018) Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing. Nat Commun 9, 2338   DOI