Browse > Article
http://dx.doi.org/10.5483/BMBRep.2020.53.7.070

Development of CRISPR/Cas9 system for targeted DNA modifications and recent improvements in modification efficiency and specificity  

Shin, Juhyun (Department of Stem Cell and Regenerative Biotechnology, Konkuk University)
Oh, Jae-Wook (Department of Stem Cell and Regenerative Biotechnology, Konkuk University)
Publication Information
BMB Reports / v.53, no.7, 2020 , pp. 341-348 More about this Journal
Abstract
The targeted nuclease clustered, regularly interspaced short palindromic repeats/CRISPR-associated proteins (CRISPR/Cas) system has recently emerged as a prominent gene manipulation method. Because of its ease in programming targeted DNA/protein binding through RNA in a vast range of organisms, this prokaryotic defense system is a versatile tool with many applications in the research field as well as high potential in agricultural and clinical improvements. This review will present a brief history that led to its discovery and adaptation. We also present some of its restrictions, and modifications that have been performed to overcome such restrictions, focusing specifically on the most common CRISPR/Cas9 mediated non-homologous end joint repair.
Keywords
Cas9; CRISPR; DSB; NHEJ; Targeted mutation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mojica FJ, Diez-Villasenor C, Soria E and Juez G (2000) Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol 36, 244-246   DOI
2 Ishino Y, Shinagawa H, Makino K, Amemura M and Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169, 5429-5433   DOI
3 Jansen R, Embden JD, Gaastra W and Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43, 1565-1575   DOI
4 Mojica FJ, Juez G and Rodriguez-Valera F (1993) Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol Microbiol 9, 613-621   DOI
5 Bolotin A, Quinquis B, Sorokin A and Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151, 2551-2561   DOI
6 Cyranoski D (2019) The CRISPR-baby scandal: what's next for human gene-editing. Nature 566, 440-442   DOI
7 El-Mounadi K, Morales-Floriano ML and Garcia-Ruiz H (2020) Principles, Applications, and Biosafety of Plant Genome Editing Using CRISPR-Cas9. Front Plant Sci 11, 56   DOI
8 Lassoued R, Macall DM, Hesseln H, Phillips PWB and Smyth SJ (2019) Benefits of genome-edited crops: expert opinion. Transgenic Res 28, 247-256   DOI
9 Smithies O, Gregg RG, Boggs SS, Koralewski MA and Kucherlapati RS (1985) Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 317, 230-234   DOI
10 Bollag RJ, Waldman AS and Liskay RM (1989) Homologous recombination in mammalian cells. Annu Rev Genet 23, 199-225   DOI
11 Chevalier BS and Stoddard BL (2001) Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res 29, 3757-3774   DOI
12 Vasquez KM, Marburger K, Intody Z and Wilson JH (2001) Manipulating the mammalian genome by homologous recombination. Proc Natl Acad Sci U S A 98, 8403-8410   DOI
13 Bouabe H and Okkenhaug K (2013) Gene targeting in mice: a review. Methods Mol Biol 1064, 315-336   DOI
14 Rouet P, Smih F and Jasin M (1994) Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A 91, 6064-6068   DOI
15 Brouns SJ, Jore MM, Lundgren M et al (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960-964   DOI
16 Mojica FJ, Diez-Villasenor C, Garcia-Martinez J and Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60, 174-182   DOI
17 Pourcel C, Salvignol G and Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151, 653-663   DOI
18 Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712   DOI
19 Wang Y, Wang M, Zheng T et al (2020) Specificity profiling of CRISPR system reveals greatly enhanced off-target gene editing. Sci Rep 10, 1-8   DOI
20 Makarova KS, Wolf YI, Alkhnbashi OS et al (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13, 722-736   DOI
21 Rees HA and Liu DR (2018) Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 19, 770-788   DOI
22 Anzalone AV, Randolph PB, Davis JR et al (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157   DOI
23 Grunewald J, Zhou R, Garcia SP et al (2019) Transcriptome-wide off-target RNA editing induced by CRISPRguided DNA base editors. Nature 569, 433-437   DOI
24 Horvath P, Romero DA, Coute-Monvoisin AC et al (2008) Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol 190, 1401-1412   DOI
25 Sorek R, Kunin V and Hugenholtz P (2008) CRISPR--a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 6, 181-186   DOI
26 Marraffini LA and Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, 1843-1845   DOI
27 Deveau H, Barrangou R, Garneau JE et al (2008) Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190, 1390-1400   DOI
28 Garneau JE, Dupuis ME, Villion M et al (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67-71   DOI
29 Wang T, Wei JJ, Sabatini DM and Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80-84   DOI
30 Grunewald J, Zhou R, Iyer S et al (2019) CRISPR DNA base editors with reduced RNA off-target and self-editing activities. Nat Biotechnol 37, 1041-1048   DOI
31 Doench JG, Hartenian E, Graham DB et al (2014) Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32, 1262-1267   DOI
32 Gagnon JA, Valen E, Thyme SB et al (2014) Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One 9, e98186   DOI
33 Zhang XH, Tee LY, Wang XG, Huang QS and Yang SH (2015) Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids 4, e264   DOI
34 Carroll D (2019) Collateral damage: benchmarking off-target effects in genome editing. Genome Biol 20, 114   DOI
35 Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P and Siksnys V (2011) The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39, 9275-9282   DOI
36 Deltcheva E, Chylinski K, Sharma CM et al (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602-607   DOI
37 Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821   DOI
38 Karvelis T, Gasiunas G, Miksys A, Barrangou R, Horvath P and Siksnys V (2013) crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus. RNA Biol 10, 841-851   DOI
39 Gasiunas G, Barrangou R, Horvath P and Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109, E2579-2586   DOI
40 Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823   DOI
41 Jinek M, East A, Cheng A, Lin S, Ma E and Doudna J (2013) RNA-programmed genome editing in human cells. Elife 2, e00471   DOI
42 Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339, 823-826   DOI
43 Cho SW, Kim S, Kim JM and Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31, 230-232   DOI
44 Hsu PD, Scott DA, Weinstein JA et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31, 827-832   DOI
45 Mirzazadeh R, Kallas T, Bienko M and Crosetto N (2018) Genome-wide profiling of DNA double-strand breaks by the BLESS and BLISS methods. Methods Mol Biol 1672, 167-194   DOI
46 Tsai SQ, Zheng Z, Nguyen NT et al (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33, 187-197   DOI
47 Kim D, Bae S, Park J et al (2015) Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods 12, 237-243, 231 p following 243   DOI
48 Cho SW, Kim S, Kim Y et al (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24, 132-141   DOI
49 Fu Y, Foden JA, Khayter C et al (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31, 822-826   DOI
50 Mali P, Aach J, Stranges PB et al (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31, 833-838   DOI
51 Koonin EV, Makarova KS and Zhang F (2017) Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37, 67-78   DOI
52 Anders C, Niewoehner O, Duerst A and Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513, 569-573   DOI
53 Kuscu C, Arslan S, Singh R, Thorpe J and Adli M (2014) Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 32, 677-683   DOI
54 Nambiar TS, Billon P, Diedenhofen G et al (2019) Stimulation of CRISPR-mediated homology-directed repair by an engineered RAD18 variant. Nat Commun 10, 3395   DOI
55 Zhu Y, Biernacka A, Pardo B et al (2019) qDSB-Seq is a general method for genome-wide quantification of DNA double-strand breaks using sequencing. Nat Commun 10, 1-11   DOI
56 Wienert B, Wyman SK, Yeh CD, Conklin BR and Corn JE (2020) CRISPR off-target detection with DISCOVER-seq. Nat Protoc 15, 1775-1799   DOI
57 Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79, 181-211   DOI
58 Brogna S and Wen J (2009) Nonsense-mediated mRNA decay (NMD) mechanisms. Nat Struct Mol Biol 16, 107-113   DOI
59 Popp MW and Maquat LE (2016) Leveraging rules of nonsense-mediated mRNA decay for genome engineering and personalized medicine. Cell 165, 1319-1322   DOI
60 Tuladhar R, Yeu Y, Tyler Piazza J et al (2019) CRISPRCas9-based mutagenesis frequently provokes on-target mRNA misregulation. Nat Commun 10, 4056   DOI
61 Winter J, Luu A, Gapinske M et al (2019) Targeted exon skipping with AAV-mediated split adenine base editors. Cell Discov 5, 1-12   DOI
62 Li L, Wu LP and Chandrasegaran S (1992) Functional domains in Fok I restriction endonuclease. Proc Natl Acad Sci U S A 89, 4275-4279   DOI
63 Rosen LE, Morrison HA, Masri S et al (2006) Homing endonuclease I-CreI derivatives with novel DNA target specificities. Nucleic Acids Res 34, 4791-4800   DOI
64 Seligman LM, Chisholm KM, Chevalier BS et al (2002) Mutations altering the cleavage specificity of a homing endonuclease. Nucleic Acids Res 30, 3870-3879   DOI
65 Sussman D, Chadsey M, Fauce S et al (2004) Isolation and characterization of new homing endonuclease specificities at individual target site positions. J Mol Biol 342, 31-41   DOI
66 Choo Y and Klug A (1994) Selection of DNA binding sites for zinc fingers using rationally randomized DNA reveals coded interactions. Proc Natl Acad Sci U S A 91, 11168-11172   DOI
67 Kim YG, Cha J and Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93, 1156-1160   DOI
68 Kim YG, Shi Y, Berg JM and Chandrasegaran S (1997) Site-specific cleavage of DNA-RNA hybrids by zinc finger/FokI cleavage domain fusions. Gene 203, 43-49   DOI
69 Bibikova M, Beumer K, Trautman JK and Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764   DOI
70 Urnov FD, Rebar EJ, Holmes MC, Zhang HS and Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11, 636-646   DOI
71 Boch J, Scholze H, Schornack S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509-1512   DOI
72 Christian M, Cermak T, Doyle EL et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186, 757-761   DOI
73 Pickar-Oliver A and Gersbach CA (2019) The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol 20, 490-507   DOI
74 Singh R, Kuscu C, Quinlan A, Qi Y and Adli M (2015) Cas9-chromatin binding information enables more accurate CRISPR off-target prediction. Nucleic Acids Res 43, e118   DOI
75 Cencic R, Miura H, Malina A et al (2014) Protospacer adjacent motif (PAM)-distal sequences engage CRISPR Cas9 DNA target cleavage. PLoS One 9, e109213   DOI
76 Kim S, Kim D, Cho SW, Kim J and Kim JS (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24, 1012-1019   DOI
77 Cebrian-Serrano A and Davies B (2017) CRISPR-Cas orthologues and variants: optimizing the repertoire, specificity and delivery of genome engineering tools. Mamm Genome 28, 247-261   DOI
78 Makarova KS, Wolf YI and Koonin EV (2018) Classification and nomenclature of CRISPR-Cas systems: where from here? CRISPR J 1, 325-336   DOI
79 Mou H, Smith JL, Peng L et al (2017) CRISPR/Cas9-mediated genome editing induces exon skipping by alternative splicing or exon deletion. Genome Biol 18, 1-8   DOI
80 Wright AV, Nunez JK and Doudna JA (2016) Biology and applications of CRISPR systems: Harnessing Nature's Toolbox for Genome Engineering. Cell 164, 29-44   DOI
81 Zetsche B, Gootenberg JS, Abudayyeh OO et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759-771   DOI
82 Paul B and Montoya G (2020) CRISPR-Cas12a: Functional overview and applications. Biomed J 43, 8-17   DOI
83 Wu X, Scott DA, Kriz AJ et al (2014) Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol 32, 670-676   DOI
84 Kim Y, Cheong SA, Lee JG et al (2016) Generation of knockout mice by Cpf1-mediated gene targeting. Nat Biotechnol 34, 808-810   DOI
85 Sui T, Song Y, Liu Z et al (2018) CRISPR-induced exon skipping is dependent on premature termination codon mutations. Genome Biol 19, 164   DOI
86 Chen D, Tang JX, Li B, Hou L, Wang X and Kang L (2018) CRISPR/Cas9-mediated genome editing induces exon skipping by complete or stochastic altering splicing in the migratory locust. BMC Biotechnol 18, 1-9