1 |
Mojica FJ, Diez-Villasenor C, Soria E and Juez G (2000) Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol 36, 244-246
DOI
|
2 |
Ishino Y, Shinagawa H, Makino K, Amemura M and Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169, 5429-5433
DOI
|
3 |
Jansen R, Embden JD, Gaastra W and Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43, 1565-1575
DOI
|
4 |
Mojica FJ, Juez G and Rodriguez-Valera F (1993) Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol Microbiol 9, 613-621
DOI
|
5 |
Bolotin A, Quinquis B, Sorokin A and Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151, 2551-2561
DOI
|
6 |
Cyranoski D (2019) The CRISPR-baby scandal: what's next for human gene-editing. Nature 566, 440-442
DOI
|
7 |
El-Mounadi K, Morales-Floriano ML and Garcia-Ruiz H (2020) Principles, Applications, and Biosafety of Plant Genome Editing Using CRISPR-Cas9. Front Plant Sci 11, 56
DOI
|
8 |
Lassoued R, Macall DM, Hesseln H, Phillips PWB and Smyth SJ (2019) Benefits of genome-edited crops: expert opinion. Transgenic Res 28, 247-256
DOI
|
9 |
Smithies O, Gregg RG, Boggs SS, Koralewski MA and Kucherlapati RS (1985) Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 317, 230-234
DOI
|
10 |
Bollag RJ, Waldman AS and Liskay RM (1989) Homologous recombination in mammalian cells. Annu Rev Genet 23, 199-225
DOI
|
11 |
Chevalier BS and Stoddard BL (2001) Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res 29, 3757-3774
DOI
|
12 |
Vasquez KM, Marburger K, Intody Z and Wilson JH (2001) Manipulating the mammalian genome by homologous recombination. Proc Natl Acad Sci U S A 98, 8403-8410
DOI
|
13 |
Bouabe H and Okkenhaug K (2013) Gene targeting in mice: a review. Methods Mol Biol 1064, 315-336
DOI
|
14 |
Rouet P, Smih F and Jasin M (1994) Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A 91, 6064-6068
DOI
|
15 |
Brouns SJ, Jore MM, Lundgren M et al (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960-964
DOI
|
16 |
Mojica FJ, Diez-Villasenor C, Garcia-Martinez J and Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60, 174-182
DOI
|
17 |
Pourcel C, Salvignol G and Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151, 653-663
DOI
|
18 |
Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712
DOI
|
19 |
Wang Y, Wang M, Zheng T et al (2020) Specificity profiling of CRISPR system reveals greatly enhanced off-target gene editing. Sci Rep 10, 1-8
DOI
|
20 |
Makarova KS, Wolf YI, Alkhnbashi OS et al (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13, 722-736
DOI
|
21 |
Rees HA and Liu DR (2018) Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 19, 770-788
DOI
|
22 |
Anzalone AV, Randolph PB, Davis JR et al (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157
DOI
|
23 |
Grunewald J, Zhou R, Garcia SP et al (2019) Transcriptome-wide off-target RNA editing induced by CRISPRguided DNA base editors. Nature 569, 433-437
DOI
|
24 |
Horvath P, Romero DA, Coute-Monvoisin AC et al (2008) Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol 190, 1401-1412
DOI
|
25 |
Sorek R, Kunin V and Hugenholtz P (2008) CRISPR--a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 6, 181-186
DOI
|
26 |
Marraffini LA and Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, 1843-1845
DOI
|
27 |
Deveau H, Barrangou R, Garneau JE et al (2008) Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190, 1390-1400
DOI
|
28 |
Garneau JE, Dupuis ME, Villion M et al (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67-71
DOI
|
29 |
Wang T, Wei JJ, Sabatini DM and Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80-84
DOI
|
30 |
Grunewald J, Zhou R, Iyer S et al (2019) CRISPR DNA base editors with reduced RNA off-target and self-editing activities. Nat Biotechnol 37, 1041-1048
DOI
|
31 |
Doench JG, Hartenian E, Graham DB et al (2014) Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32, 1262-1267
DOI
|
32 |
Gagnon JA, Valen E, Thyme SB et al (2014) Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One 9, e98186
DOI
|
33 |
Zhang XH, Tee LY, Wang XG, Huang QS and Yang SH (2015) Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids 4, e264
DOI
|
34 |
Carroll D (2019) Collateral damage: benchmarking off-target effects in genome editing. Genome Biol 20, 114
DOI
|
35 |
Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P and Siksnys V (2011) The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39, 9275-9282
DOI
|
36 |
Deltcheva E, Chylinski K, Sharma CM et al (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602-607
DOI
|
37 |
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821
DOI
|
38 |
Karvelis T, Gasiunas G, Miksys A, Barrangou R, Horvath P and Siksnys V (2013) crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus. RNA Biol 10, 841-851
DOI
|
39 |
Gasiunas G, Barrangou R, Horvath P and Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109, E2579-2586
DOI
|
40 |
Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823
DOI
|
41 |
Jinek M, East A, Cheng A, Lin S, Ma E and Doudna J (2013) RNA-programmed genome editing in human cells. Elife 2, e00471
DOI
|
42 |
Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339, 823-826
DOI
|
43 |
Cho SW, Kim S, Kim JM and Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31, 230-232
DOI
|
44 |
Hsu PD, Scott DA, Weinstein JA et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31, 827-832
DOI
|
45 |
Mirzazadeh R, Kallas T, Bienko M and Crosetto N (2018) Genome-wide profiling of DNA double-strand breaks by the BLESS and BLISS methods. Methods Mol Biol 1672, 167-194
DOI
|
46 |
Tsai SQ, Zheng Z, Nguyen NT et al (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33, 187-197
DOI
|
47 |
Kim D, Bae S, Park J et al (2015) Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods 12, 237-243, 231 p following 243
DOI
|
48 |
Cho SW, Kim S, Kim Y et al (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24, 132-141
DOI
|
49 |
Fu Y, Foden JA, Khayter C et al (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31, 822-826
DOI
|
50 |
Mali P, Aach J, Stranges PB et al (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31, 833-838
DOI
|
51 |
Koonin EV, Makarova KS and Zhang F (2017) Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37, 67-78
DOI
|
52 |
Anders C, Niewoehner O, Duerst A and Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513, 569-573
DOI
|
53 |
Kuscu C, Arslan S, Singh R, Thorpe J and Adli M (2014) Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 32, 677-683
DOI
|
54 |
Nambiar TS, Billon P, Diedenhofen G et al (2019) Stimulation of CRISPR-mediated homology-directed repair by an engineered RAD18 variant. Nat Commun 10, 3395
DOI
|
55 |
Zhu Y, Biernacka A, Pardo B et al (2019) qDSB-Seq is a general method for genome-wide quantification of DNA double-strand breaks using sequencing. Nat Commun 10, 1-11
DOI
|
56 |
Wienert B, Wyman SK, Yeh CD, Conklin BR and Corn JE (2020) CRISPR off-target detection with DISCOVER-seq. Nat Protoc 15, 1775-1799
DOI
|
57 |
Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79, 181-211
DOI
|
58 |
Brogna S and Wen J (2009) Nonsense-mediated mRNA decay (NMD) mechanisms. Nat Struct Mol Biol 16, 107-113
DOI
|
59 |
Popp MW and Maquat LE (2016) Leveraging rules of nonsense-mediated mRNA decay for genome engineering and personalized medicine. Cell 165, 1319-1322
DOI
|
60 |
Tuladhar R, Yeu Y, Tyler Piazza J et al (2019) CRISPRCas9-based mutagenesis frequently provokes on-target mRNA misregulation. Nat Commun 10, 4056
DOI
|
61 |
Winter J, Luu A, Gapinske M et al (2019) Targeted exon skipping with AAV-mediated split adenine base editors. Cell Discov 5, 1-12
DOI
|
62 |
Li L, Wu LP and Chandrasegaran S (1992) Functional domains in Fok I restriction endonuclease. Proc Natl Acad Sci U S A 89, 4275-4279
DOI
|
63 |
Rosen LE, Morrison HA, Masri S et al (2006) Homing endonuclease I-CreI derivatives with novel DNA target specificities. Nucleic Acids Res 34, 4791-4800
DOI
|
64 |
Seligman LM, Chisholm KM, Chevalier BS et al (2002) Mutations altering the cleavage specificity of a homing endonuclease. Nucleic Acids Res 30, 3870-3879
DOI
|
65 |
Sussman D, Chadsey M, Fauce S et al (2004) Isolation and characterization of new homing endonuclease specificities at individual target site positions. J Mol Biol 342, 31-41
DOI
|
66 |
Choo Y and Klug A (1994) Selection of DNA binding sites for zinc fingers using rationally randomized DNA reveals coded interactions. Proc Natl Acad Sci U S A 91, 11168-11172
DOI
|
67 |
Kim YG, Cha J and Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93, 1156-1160
DOI
|
68 |
Kim YG, Shi Y, Berg JM and Chandrasegaran S (1997) Site-specific cleavage of DNA-RNA hybrids by zinc finger/FokI cleavage domain fusions. Gene 203, 43-49
DOI
|
69 |
Bibikova M, Beumer K, Trautman JK and Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764
DOI
|
70 |
Urnov FD, Rebar EJ, Holmes MC, Zhang HS and Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11, 636-646
DOI
|
71 |
Boch J, Scholze H, Schornack S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509-1512
DOI
|
72 |
Christian M, Cermak T, Doyle EL et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186, 757-761
DOI
|
73 |
Pickar-Oliver A and Gersbach CA (2019) The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol 20, 490-507
DOI
|
74 |
Singh R, Kuscu C, Quinlan A, Qi Y and Adli M (2015) Cas9-chromatin binding information enables more accurate CRISPR off-target prediction. Nucleic Acids Res 43, e118
DOI
|
75 |
Cencic R, Miura H, Malina A et al (2014) Protospacer adjacent motif (PAM)-distal sequences engage CRISPR Cas9 DNA target cleavage. PLoS One 9, e109213
DOI
|
76 |
Kim S, Kim D, Cho SW, Kim J and Kim JS (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24, 1012-1019
DOI
|
77 |
Cebrian-Serrano A and Davies B (2017) CRISPR-Cas orthologues and variants: optimizing the repertoire, specificity and delivery of genome engineering tools. Mamm Genome 28, 247-261
DOI
|
78 |
Makarova KS, Wolf YI and Koonin EV (2018) Classification and nomenclature of CRISPR-Cas systems: where from here? CRISPR J 1, 325-336
DOI
|
79 |
Mou H, Smith JL, Peng L et al (2017) CRISPR/Cas9-mediated genome editing induces exon skipping by alternative splicing or exon deletion. Genome Biol 18, 1-8
DOI
|
80 |
Wright AV, Nunez JK and Doudna JA (2016) Biology and applications of CRISPR systems: Harnessing Nature's Toolbox for Genome Engineering. Cell 164, 29-44
DOI
|
81 |
Zetsche B, Gootenberg JS, Abudayyeh OO et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759-771
DOI
|
82 |
Paul B and Montoya G (2020) CRISPR-Cas12a: Functional overview and applications. Biomed J 43, 8-17
DOI
|
83 |
Wu X, Scott DA, Kriz AJ et al (2014) Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol 32, 670-676
DOI
|
84 |
Kim Y, Cheong SA, Lee JG et al (2016) Generation of knockout mice by Cpf1-mediated gene targeting. Nat Biotechnol 34, 808-810
DOI
|
85 |
Sui T, Song Y, Liu Z et al (2018) CRISPR-induced exon skipping is dependent on premature termination codon mutations. Genome Biol 19, 164
DOI
|
86 |
Chen D, Tang JX, Li B, Hou L, Wang X and Kang L (2018) CRISPR/Cas9-mediated genome editing induces exon skipping by complete or stochastic altering splicing in the migratory locust. BMC Biotechnol 18, 1-9
|