Browse > Article
http://dx.doi.org/10.5187/jast.2021.e90

DNA damage repair is suppressed in porcine aged oocytes  

Lin, Tao (School of Life Sciences and Food Engineering, Hebei University of Engineering)
Sun, Ling (School of Life Sciences and Food Engineering, Hebei University of Engineering)
Lee, Jae Eun (Division of Animal & Dairy Science, Chungnam National University)
Kim, So Yeon (Division of Animal & Dairy Science, Chungnam National University)
Jin, Dong Il (Division of Animal & Dairy Science, Chungnam National University)
Publication Information
Journal of Animal Science and Technology / v.63, no.5, 2021 , pp. 984-997 More about this Journal
Abstract
This study sought to evaluate DNA damage and repair in porcine postovulatory aged oocytes. The DNA damage response, which was assessed by H2A.X expression, increased in porcine aged oocytes over time. However, the aged oocytes exhibited a significant decrease in the expression of RAD51, which reflects the DNA damage repair capacity. Further experiments suggested that the DNA repair ability was suppressed by the downregulation of genes involved in the homologous recombination (HR) and nonhomologous end-joining (NHEJ) pathways. The expression levels of the cell cycle checkpoint genes, CHEK1 and CHEK2, were upregulated in porcine aged oocytes in response to induced DNA damage. Immunofluorescence results revealed that the expression level of H3K79me2 was significantly lower in porcine aged oocytes than in control oocytes. In addition, embryo quality was significantly reduced in aged oocytes, as assessed by measuring the cell proliferation capacity. Our results provide evidence that DNA damage is increased and the DNA repair ability is suppressed in porcine aged oocytes. These findings increase our understanding of the events that occur during postovulatory oocyte aging.
Keywords
Oocyte aging; DNA damage; DNA repair; H3K79me2; Pig;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S, et al. γH2AX and cancer. Nat Rev Cancer. 2008;8:957-67. https://doi.org/10.1038/nrc2523   DOI
2 Lin T, Lee JE, Kang JW, Oqani RK, Cho ES, Kim SB, et al. Melatonin supplementation during prolonged in vitro maturation improves the quality and development of poor-quality porcine oocytes via anti-oxidative and anti-apoptotic effects. Mol Reprod Dev. 2018;85:665-81. https://doi.org/10.1002/mrd.23052   DOI
3 Kinner A, Wu W, Staudt C, Iliakis G. γ-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res. 2008;36:5678-94. https://doi.org/10.1093/nar/gkn550   DOI
4 Govindaraj V, Keralapura Basavaraju R, Rao AJ. Changes in the expression of DNA double strand break repair genes in primordial follicles from immature and aged rats. Reprod Biomed Online. 2015;30:303-10. https://doi.org/10.1016/j.rbmo.2014.11.010   DOI
5 Tian XC, Lonergan P, Jeong BS, Evans ACO, Yang X. Association of MPF, MAPK, and nuclear progression dynamics during activation of young and aged bovine oocytes. Mol Reprod Dev. 2002;62:132-8. https://doi.org/10.1002/mrd.10072   DOI
6 Lord T, Nixon B, Jones KT, Aitken RJ. Melatonin prevents postovulatory oocyte aging in the mouse and extends the window for optimal fertilization in vitro. Biol Reprod. 2013;88:67. https://doi.org/10.1095/biolreprod.112.106450   DOI
7 Sun SC, Gao WW, Xu YN, Jin YX, Wang QL, Yin XJ, et al. Degradation of actin nucleators affects cortical polarity of aged mouse oocytes. Fertil Steril. 2012;97:984-90. https://doi.org/10.1016/j.fertnstert.2012.01.101   DOI
8 Liang QX, Lin YH, Zhang CH, Sun HM, Zhou L, Schatten H, et al. Resveratrol increases resistance of mouse oocytes to postovulatory aging in vivo. Aging (Albany NY). 2018;10:1586-96. https://doi.org/10.18632/aging.101494   DOI
9 Wang Y, Li L, Fan LH, Jing Y, Li J, Ouyang YC, et al. N-acetyl-L-cysteine (NAC) delays post-ovulatory oocyte aging in mouse. Aging (Albany NY). 2019;11:2020-30. https://doi.org/10.18632/aging.101898   DOI
10 Ducibella T, Duffy P, Reindollar R, Su B. Changes in the distribution of mouse oocyte cortical granules and ability to undergo the cortical reaction during gonadotropin-stimulated meiotic maturation and aging in vivo. Biol Reprod. 1990;43:870-6. https://doi.org/10.1095/biolreprod43.5.870   DOI
11 Miao YL, Kikuchi K, Sun QY, Schatten H. Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Hum Reprod Update. 2009;15:573-85. https://doi.org/10.1093/humupd/dmp014   DOI
12 Titus S, Stobezki R, Oktay K. Impaired DNA repair as a mechanism for oocyte aging: is it epigenetically determined? Semin Reprod Med. 2015;33:384-8. https://doi.org/10.1055/s-0035-1567824   DOI
13 Wang T, Gao YY, Chen L, Nie ZW, Cheng W, Liu X, et al. Melatonin prevents postovulatory oocyte aging and promotes subsequent embryonic development in the pig. Aging (Albany NY). 2017;9:1552-64. https://doi.org/10.18632/aging.101252   DOI
14 Miao Y, Ma S, Liu X, Miao D, Chang Z, Luo M, et al. Fate of the first polar bodies in mouse oocytes. Mol Reprod Dev. 2004;69:66-76. https://doi.org/10.1002/mrd.20148   DOI
15 Liang XW, Ge ZJ, Guo L, Luo SM, Han ZM, Schatten H, et al. Effect of postovulatory oocyte aging on DNA methylation imprinting acquisition in offspring oocytes. Fertil Steril. 2011;96:1479-84. https://doi.org/10.1016/j.fertnstert.2011.09.022   DOI
16 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262   DOI
17 Bartek J, Lukas J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell. 2003;3:421-9. https://doi.org/10.1016/S1535-6108(03)00110-7   DOI
18 Huyen Y, Zgheib O, DiTullio RA Jr., Gorgoulis VG, Zacharatos P, Petty TJ, et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature. 2004;432:406-11. https://doi.org/10.1038/nature03114   DOI
19 Bohrer RC, Coutinho ARS, Duggavathi R, Bordignon V. The incidence of DNA double-strand breaks is higher in late-cleaving and less developmentally competent porcine embryos. Biol Reprod. 2015;93:59. https://doi.org/10.1095/biolreprod.115.130542   DOI
20 Ge ZJ, Schatten H, Zhang CL, Sun QY. Oocyte ageing and epigenetics. Reproduction. 2015;149:R103-14. https://doi.org/10.1530/REP-14-0242   DOI
21 Zhang M, ShiYang X, Zhang Y, Miao Y, Chen Y, Cui Z, et al. Coenzyme Q10 ameliorates the quality of postovulatory aged oocytes by suppressing DNA damage and apoptosis. Free Radic Biol Med. 2019;143:84-94. https://doi.org/10.1016/j.freeradbiomed.2019.08.002   DOI
22 Panier S, Boulton SJ. Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol. 2014;15:7-18. https://doi.org/10.1038/nrm3719   DOI
23 Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem. 2001;276:42462-7. https://doi.org/10.1074/jbc.C100466200   DOI
24 Bohrer RC, Duggavathi R, Bordignon V. Inhibition of histone deacetylases enhances DNA damage repair in SCNT embryos. Cell Cycle. 2014;13:2138-48. https://doi.org/10.4161/cc.29215   DOI
25 Stiff T, Walker SA, Cerosaletti K, Goodarzi AA, Petermann E, Concannon P, et al. ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling. EMBO J. 2006;25:5775-82. https://doi.org/10.1038/sj.emboj.7601446   DOI
26 Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature. 2001;410:842-7. https://doi.org/10.1038/35071124   DOI
27 Lord T, Aitken RJ. Oxidative stress and ageing of the post-ovulatory oocyte. Reproduction. 2013;146:R217-27. https://doi.org/10.1530/REP-13-0111   DOI
28 Oktay K, Turan V, Titus S, Stobezki R, Liu L. BRCA mutations, DNA repair deficiency, and ovarian aging. Biol Reprod. 2015;93:67. https://doi.org/10.1095/biolreprod.115.132290   DOI
29 Kim NH, Moon SJ, Prather RS, Day BN. Cytoskeletal alteration in aged porcine oocytes and parthenogenesis. Mol Reprod Dev. 1996;43:513-8. https://doi.org/10.1002/(SICI)1098-2795(199604)43:4<513::AID-MRD14>3.0.CO;2-%23   DOI
30 Goud AP, Goud PT, Van Oostveldt P, Diamond MP, Dhont M. Dynamic changes in microtubular cytoskeleton of human postmature oocytes revert after ooplasm transfer. Fertil Steril. 2004;81:323-31. https://doi.org/10.1016/j.fertnstert.2003.06.033   DOI
31 Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol. 2000;10:886-95. https://doi.org/10.1016/S0960-9822(00)00610-2   DOI
32 Zhang D, Zhang X, Zeng M, Yuan J, Liu M, Yin Y, et al. Increased DNA damage and repair deficiency in granulosa cells are associated with ovarian aging in rhesus monkey. J Assist Reprod Genet. 2015;32:1069-78. https://doi.org/10.1007/s10815-015-0483-5   DOI
33 Yamamori T, Meike S, Nagane M, Yasui H, Inanami O. ER stress suppresses DNA double-strand break repair and sensitizes tumor cells to ionizing radiation by stimulating proteasomal degradation of Rad51. FEBS Lett. 2013;587:3348-53. https://doi.org/10.1016/j.febslet.2013.08.030   DOI
34 Reinhardt HC, Yaffe MB. Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response. Nat Rev Mol Cell Biol. 2013;14:563-80. https://doi.org/10.1038/nrm3640   DOI
35 Liu MJ, Sun AG, Zhao SG, Liu H, Ma SY, Li M, et al. Resveratrol improves in vitro maturation of oocytes in aged mice and humans. Fertil Steril. 2018;109:900-7. https://doi.org/10.1016/j.fertnstert.2018.01.020   DOI
36 Fissore RA, Kurokawa M, Knott J, Zhang M, Smyth J. Mechanisms underlying oocyte activation and postovulatory ageing. Reproduction. 2002;124:745-54. https://doi.org/10.1530/rep.0.1240745   DOI
37 Niu YJ, Zhou W, Nie ZW, Zhou D, Xu YN, Ock SA, et al. Ubiquinol-10 delays postovulatory oocyte aging by improving mitochondrial renewal in pigs. Aging (Albany NY). 2020;12:1256-71. https://doi.org/10.18632/aging.102681   DOI
38 Perez GI, Jurisicova A, Matikainen T, Moriyama T, Kim MR, Takai Y, et al. A central role for ceramide in the age-related acceleration of apoptosis in the female germline. FASEB J. 2005;19:860-2. https://doi.org/10.1096/fj.04-2903fje   DOI
39 Bertoldo MJ, Listijono DR, Ho WHJ, Riepsamen AH, Goss DM, Richani D, et al. NAD+ repletion rescues female fertility during reproductive aging. Cell Rep. 2020;30:1670-81. https://doi.org/10.1016/j.celrep.2020.01.058   DOI
40 Wilcox AJ, Weinberg CR, Baird DD. Post-ovulatory ageing of the human oocyte and embryo failure. Hum Reprod. 1998;13:394-7. https://doi.org/10.1093/humrep/13.2.394   DOI
41 Liang S, Guo J, Choi JW, Kim NH, Cui XS. Effect and possible mechanisms of melatonin treatment on the quality and developmental potential of aged bovine oocytes. Reprod Fertil Dev. 2017;29:1821-31. https://doi.org/10.1071/RD16223   DOI
42 Xu Z, Abbott A, Kopf GS, Schultz RM, Ducibella T. Spontaneous activation of ovulated mouse eggs: time-dependent effects on M-phase exit, cortical granule exocytosis, maternal messenger ribonucleic acid recruitment, and inositol 1,4,5-trisphosphate sensitivity. Biol Reprod. 1997;57:743-50. https://doi.org/10.1095/biolreprod57.4.743   DOI
43 Lin T, Lee JE, Oqani RK, Kim SY, Cho ES, Jeong YD, et al. Delayed blastocyst formation or an extra day culture increases apoptosis in pig blastocysts. Anim Reprod Sci. 2017;185:128-39. https://doi.org/10.1016/j.anireprosci.2017.08.012   DOI
44 Zhang T, Zhang GL, Ma JY, Qi ST, Wang ZB, Wang ZW, et al. Effects of DNA damage and short-term spindle disruption on oocyte meiotic maturation. Histochem Cell Biol. 2014;142:185-94. https://doi.org/10.1007/s00418-014-1182-5   DOI
45 Wang ZW, Ma XS, Ma JY, Luo YB, Lin F, Wang ZB, et al. Laser microbeam-induced DNA damage inhibits cell division in fertilized eggs and early embryos. Cell Cycle. 2013;12:3336-44. https://doi.org/10.4161/cc.26327   DOI
46 Hornak M, Jeseta M, Musilova P, Pavlok A, Kubelka M, Motlik J, et al. Frequency of aneuploidy related to age in porcine oocytes. PLOS ONE. 2011;6:e18892. https://doi.org/10.1371/journal.pone.0018892   DOI
47 Titus S, Li F, Stobezki R, Akula K, Unsal E, Jeong K, et al. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Sci Transl Med. 2013;5:172ra21. https://doi.org/10.1126/scitranslmed.3004925   DOI
48 Park YG, Lee SE, Yoon JW, Kim EY, Park SP. Allicin protects porcine oocytes against damage during aging in vitro. Mol Reprod Dev. 2019;86:1116-25. https://doi.org/10.1002/mrd.23227   DOI
49 Martin C, Zhang Y. The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol. 2005;6:838-49. https://doi.org/10.1038/nrm1761   DOI
50 Ooga M, Inoue A, Kageyama S, Akiyama T, Nagata M, Aoki F. Changes in H3K79 methylation during preimplantation development in mice. Biol Reprod. 2008;78:413-24. https://doi.org/10.1095/biolreprod.107.063453   DOI