• 제목/요약/키워드: NH gas

검색결과 833건 처리시간 0.028초

코로나 방전에 의한 NOx, $So_2$동시제거에서 첨가제의 영향 (Effect of an Additives on Simultaneous Removal of NOx, $So_2$by Corona Discharge)

  • 박재윤;고용술;이재동;손성도;박상현
    • 한국전기전자재료학회논문지
    • /
    • 제13권5호
    • /
    • pp.451-457
    • /
    • 2000
  • Experimental investigations on the effect of two kinds of additives ; aqueous NaOH solution and ammonia(NH$_3$) for removal of NOx and SO$_2$ simultaneously by corona discharge were carried out. The simulated combustion flue gas was[NO(0.02[%])-SO$_2$(0.08[%])-$CO_2$-Air-$N_2$] Volume percentage of aqueous NaOH solution used was 20[%] and $N_2$flow rate was 2.5[$\ell$/min] for bubbling aqueous NaOH solution Ammonia gas(14.81[%]) balanced by argon was diluted by air. NH$_3$ molecular ratios(MR) based on [NH$_3$] and [NO+SO$_2$] were 1, 1.5 and 2.5 The vapour of aqueous NaOH solution and NH$_3$was introduced to the main simulated combustion flue gas duct through injection systems which were located at downstream of corona discharge reactor. NOx(NO+NO$_2$) removal rate by injecting the vapour of aqueous NaOH solution was much better than that by injecting NH$_3$however SO$_2$removal rate by injecting NH$_3$was much better than that by injecting the vapour of aqueous NaOH SO$_2$removal rate slightly increased with increasing applied voltage. When the vapour of aqueous NaOH solution and NH$_3$were simultaneously injection NOx and SO$_2$ removal rate were significantly increased.

  • PDF

LPCVD에서 암모니아와 염소의 누출에 대한 피해예측 (A Study on the Estimation of Damage by Leaking of NH3 and Cl2 applied to LPCVD)

  • 허용정;임사환
    • 한국가스학회지
    • /
    • 제18권5호
    • /
    • pp.1-5
    • /
    • 2014
  • 첨단과학이 발전하면서 반도체의 필요성은 끊임없이 요구되고 있으며, 이러한 반도체 공정에서는 다량의 독성가스를 이용한 공정이 많다. 이러한 공정에서 가스의 누설로 인한 사고의 위험성은 항상 내재되어 있는 실정이다. 특히 국내 독성가스 사고는 암모니아와 염소에 의한 사고가 대부분이다. 따라서 본 논문에서는 LPCVD 공정에서 사용하는 암모니아와 염소의 누출로 인한 피해를 예측하여 안전에 만전을 기하고자 한다.

단층 탄소나노튜브의 암모니아 가스에 대한 감응특성과 열처리 효과 (NH3 Gas Sensing Characteristics of Single-Walled Carbon Nanotubes and Heating Effect)

  • 허증수;이상태;김민주;윤광현
    • 한국재료학회지
    • /
    • 제14권4호
    • /
    • pp.276-280
    • /
    • 2004
  • Carbon nanotubes(CNT) were synthesized by arc-discharge method. To fabricate CNT sensor, CNT powder was dispersed in $\alpha$-Terpinol($C_{10}$ $H_{17}$OH) solution. The CNT films were fabricated by screen printing on the interdigitated Pt/Pd alloy electrode. The microstructure of CNT film were observed by scanning electron microscopy (SEM). In order to investigate the gas sensing characteristics of the film, the CNT film was experimented to measure NH$_3$ response and recovery time. And this sensor shows better reproductibility and faster recovery time than another CNT sensors. We suggest the possibility to utilize a CNT as new sensing materials for environmental monitoring.

플라즈마 실리콘 OXYNITRIDE막의 구조적 특성에 관한 고찰 (A Study on the Structure Properties of Plasma Silicon Oxynitride Film)

  • 성영권;이철진;최복길
    • 대한전기학회논문지
    • /
    • 제41권5호
    • /
    • pp.483-491
    • /
    • 1992
  • Plasma silicon oxynitride film has been applied as a final passivation layer for semiconductor devices, because it has high resistance to humidity and prevents from alkali ion's penetration, and has low film stress. Structure properties of plasma silicon oxynitride film have been studied experimentally by the use of FT-IR, AES, stress gauge and ellipsometry. In this experiment,Si-N bonds increase as NS12TO/(NS12TO+NHS13T) gas ratio increases. Peaks of Si-N bond, Si-H bond and N-H bond were shifted to high wavenumber according to NS12TO/(NS12TO+NHS13T) gas ratio increase. Absorption peaks of Si-H bond were decreased by furnace anneal at 90$0^{\circ}C$. The atomic composition of film represents that oxygen atoms increase as NS12TO/(NS12TO+NHS13T) gas ratio increases, to the contrary, nitrogen atoms decrease.

  • PDF

Highly Porous Tungsten Oxide Nanowires As Resistive Sensor for Reducing Gases

  • Nguyen, Minh Vuong;Hoang, Nhat Hieu;Jang, Dong-Mi;Jung, Hyuck;Kim, Do-Jin
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.16.1-16.1
    • /
    • 2011
  • Gas sensor properties of $WO_3$ nanowire structures have been studied. The sensing layer was prepared by deposition of tungsten metal on porous single wall carbon nanotubes followed by thermal oxidation. The morphology and crystalline quality of $WO_3$ material was investigated by SEM, TEM, XRD and Raman analysis. A highly porous $WO_3$ nanowire structure with a mean diameter of 82 nm was obtained. Response to CO, $NH_3$ and $H_2$ gases diluted in air were investigated in the temperature range of $100{\sim}340^{\circ}C$ The sensor exhibited low response to CO gas and quite high response to $NH_3$ and $H_2$ gases. The highest sensitivity was observed at $250^{\circ}C$ for $NH_3$ and $300^{\circ}C$ for $H_2$. The effect of the diameters of $WO_3$ nanowires on the sensor performance was also studied. The $WO_3$ nanowires sensor with diameter of 40 nm showed quite high sensitivity, fast response and recovery times to $H_2$ diluted in dry air. The sensitivity as a function of detecting gas concentrations and gas sensing mechanism was discussed. The effect of dilution carrier gases, dry air and nitrogen, was examined.

  • PDF

Sensing Characterization of Metal Oxide Semiconductor-Based Sensor Arrays for Gas Mixtures in Air

  • Jung-Sik Kim
    • 한국재료학회지
    • /
    • 제33권5호
    • /
    • pp.195-204
    • /
    • 2023
  • Micro-electronic gas sensor devices were developed for the detection of carbon monoxide (CO), nitrogen oxides (NOx), ammonia (NH3), and formaldehyde (HCHO), as well as binary mixed-gas systems. Four gas sensing materials for different target gases, Pd-SnO2 for CO, In2O3 for NOx, Ru-WO3 for NH3, and SnO2-ZnO for HCHO, were synthesized using a sol-gel method, and sensor devices were then fabricated using a micro sensor platform. The gas sensing behavior and sensor response to the gas mixture were examined for six mixed gas systems using the experimental data in MEMS gas sensor arrays in sole gases and their mixtures. The gas sensing behavior with the mixed gas system suggests that specific adsorption and selective activation of the adsorption sites might occur in gas mixtures, and allow selectivity for the adsorption of a particular gas. The careful pattern recognition of sensing data obtained by the sensor array made it possible to distinguish a gas species from a gas mixture and to measure its concentration.

Si-Al-SiO2-NH4F(β-Si3N4)계에서 연소반응에 의한 β-SiAlON분말의 제조 (Preparation of β-SiAlON Powder by Combustion Reaction in the System of Si-Al-SiO2-NH4F(β-Si3N4))

  • 민현홍;신창윤;원창환
    • 한국세라믹학회지
    • /
    • 제43권10호
    • /
    • pp.595-600
    • /
    • 2006
  • The preparation of $\beta$-SiAlON powder by SHS in the system of $Si-Al-SiO_2-NH_4F(\beta-Si_3N_4)$ was investigated in this study. In the preparation of SiAlON powder, the effect of gas pressure, compositions such as Si, $NH_4F$, \beta-Si_3N_4$ and additive in mixture on the reactivity were investigated. At 50 atm of the initial inert gas pressure in reactor, the optimum composition for the preparation of pure $\beta$-SiAlON was $3Si+Al+2SiO_2+NH_4F$. The $\beta$-SiAlON powder synthesized in this condition was a single phase $\beta$-SiAlON with a rod like morphology.

Preparation and characteristics of conducting polymer-coated multiwalled carbon nanotubes for a gas sensor

  • Jang, Woo-Kyung;Yun, Ju-Mi;Kim, Hyung-Il;Lee, Young-Seak
    • Carbon letters
    • /
    • 제12권3호
    • /
    • pp.162-166
    • /
    • 2011
  • Conducting polymer-coated multiwalled carbon nanotubes (MWCNTs) were prepared by template polymerization in order to enhance their gas sensitivity. This investigation of the conducting polymer phases that formed on the surface of the MWCNTs is based on field-emission scanning electron microscopy images. The thermal stability of the conducting polymer-coated MWCNTs was significantly improved by the high thermal stability of MWCNTs. The synergistic effects of the conducting polymer-coated MWCNTs improve the gas-sensing properties. MWCNTs coated with polyaniline uniformly show outstanding improvement in gas sensitivity to $NH_3$ due to the synergistic combination of efficient adsorption of $NH_3$ gas and variation in the conduction of electrons.

가정용 발효기를 이용한 청국장 제조과정의 가스감지 패턴 (Gas sensing pattern in chungkukjang production using household fermentation system)

  • 정훈철;최시영;김종부
    • 센서학회지
    • /
    • 제18권1호
    • /
    • pp.72-76
    • /
    • 2009
  • The sensing system was designed and fabricated to investigate the ferment environment of soybeans. $NH_3$ gas was saturated after about 7 h and $CO_2$ gas was reached the peak after about 8 h in the inoculation of Bacillus subtilis. However, times that $CO_2$ gas and $NH_3$ gas were reached maximum value without Bacillus subtilis were about 15 h and 18 h, respectively. The sample that inoculated Bacillus subtils had deeper taste than one without it. We found that the peak time of $CO_2$ gas means the starting time of fermentation. If we control the operating time after the start of fermentation, it is expected to make a suitable Chungkukjang to individual preference.

Theoretical Studies on the Addition Reactions of Ketene with NH3 in the Gas Phase and in Non-Aqueous Solutions

  • Kim, Chang-Kon;Lee, Kyung A;Chen, Junxian;Lee, Hai-Whang;Lee, Bon-Su;Kim, Chan-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권7호
    • /
    • pp.1335-1343
    • /
    • 2008
  • Theoretical studies on the un-catalyzed and catalyzed aminations of ketene with $NH_3$ and $(NH_3)_2$, respectively, were studied using MP2 and hybrid density functional theory of B3LYP at the 6-31+G(d,p) and 6- 311+G(3df,2p) basis sets in the gas phase and in benzene and acetonitrile solvents. In the gas phase reaction, the un-catalyzed mechanism was the same as those previously reported by others. The catalyzed mechanism, however, was more complicated than expected requiring three transition states for the complete description of the C=O addition pathways. In the un-catalyzed amination, rate determining step was the breakdown of enol amide but in the catalyzed reaction, it was changed to the formation of enol amide, which was contradictory to the previous findings. Starting from the gas-phase structures, all structures were re-optimized using the CPCM method in solvent medium. In a high dielectric medium, acetonitrile, a zwitterions formed from the reaction of $CH_2$=C=O with $(NH_3)_2$, I(d), exists as a genuine minimum but other zwitterions, I(m) in acetonitrile and I(d) in benzene become unstable when ZPE corrected energies are used. Structural and energetic changes induced by solvation were considered in detail. Lowering of the activation energy by introducing additional $NH_3$ molecule amounted to ca. −20 $\sim$ −25 kcal/mol, which made catalyzed reaction more facile than un-catalyzed one.