DOI QR코드

DOI QR Code

Theoretical Studies on the Addition Reactions of Ketene with NH3 in the Gas Phase and in Non-Aqueous Solutions

  • Published : 2008.07.20

Abstract

Theoretical studies on the un-catalyzed and catalyzed aminations of ketene with $NH_3$ and $(NH_3)_2$, respectively, were studied using MP2 and hybrid density functional theory of B3LYP at the 6-31+G(d,p) and 6- 311+G(3df,2p) basis sets in the gas phase and in benzene and acetonitrile solvents. In the gas phase reaction, the un-catalyzed mechanism was the same as those previously reported by others. The catalyzed mechanism, however, was more complicated than expected requiring three transition states for the complete description of the C=O addition pathways. In the un-catalyzed amination, rate determining step was the breakdown of enol amide but in the catalyzed reaction, it was changed to the formation of enol amide, which was contradictory to the previous findings. Starting from the gas-phase structures, all structures were re-optimized using the CPCM method in solvent medium. In a high dielectric medium, acetonitrile, a zwitterions formed from the reaction of $CH_2$=C=O with $(NH_3)_2$, I(d), exists as a genuine minimum but other zwitterions, I(m) in acetonitrile and I(d) in benzene become unstable when ZPE corrected energies are used. Structural and energetic changes induced by solvation were considered in detail. Lowering of the activation energy by introducing additional $NH_3$ molecule amounted to ca. −20 $\sim$ −25 kcal/mol, which made catalyzed reaction more facile than un-catalyzed one.

Keywords

References

  1. The Chemistry of Ketenes, Allenes, and Related Compounds; Patai, S., Ed.; John Wiley and Sons: New York, 1980
  2. Tidwell, T. T. Ketenes; John Wiley and Sons: New York, 1995
  3. Egle, I.; Lai, W.-Y.; Moore, P. A.; Renton, P.; Tidwell, T. T.; Zaho, D.-c. J. Org. Chem. 1997, 61, 18
  4. Butkovskaya, N. I.; Manke, G., II; Sester, D. W. J. Phys. Chem. 1995, 99, 11115 https://doi.org/10.1021/j100028a011
  5. Zhao, D.-C.; Allen, A. D.; Tidwell, T. T. J. Am. Chem. Soc. 1993, 115, 10097 https://doi.org/10.1021/ja00075a027
  6. Tidwell, T. T. Acc. Chem. Res. 1990, 23, 273 https://doi.org/10.1021/ar00177a002
  7. Allen, A. D.; Tidwell, T. T. J. Am. Chem. Soc. 1987, 109, 2774 https://doi.org/10.1021/ja00243a034
  8. Duan, X.; Page, M. J. Am. Chem. Soc. 1995, 117, 5114 https://doi.org/10.1021/ja00123a013
  9. Nguyen, M. T.; Sengupta, D.; Raspoet, G.; Vanquickenborne, L. G. J. Phys. Chem. 1995, 99, 11883 https://doi.org/10.1021/j100031a015
  10. Skancke, P. N. J. Phys. Chem. 1992, 96, 8065 https://doi.org/10.1021/j100199a043
  11. Nguyen, M. T.; Hegarty, A. F. J. Am. Chem. Soc. 1984, 106, 1552 https://doi.org/10.1021/ja00318a003
  12. Lillford, P. J.; Satchell, D. P. N. J. Chem. Soc. B 1970, 1016 https://doi.org/10.1039/j29700001016
  13. Lillford, P. J.; Satchell, D. P. N. J. Chem. Soc. B 1968, 54 https://doi.org/10.1039/j29680000054
  14. Lee, I.; Song, C. H.; Uhm, T. S. J. Phys. Org. Chem. 1988, 1, 83 https://doi.org/10.1002/poc.610010204
  15. Sung, K.; Tidwell, T. T. J. Am. Chem. Soc. 1998, 120, 3043 https://doi.org/10.1021/ja972200p
  16. Wagner, B. D.; Arnold, B. R.; Brown, G. S.; Lusztyk, J. J. Am. Chem. Soc. 1998, 120, 1827 https://doi.org/10.1021/ja964155b
  17. de Lucas, N. C.; Netto-Ferreira, J. C.; Androas, J.; Lusztyk, J.; Wagner, B. D.; Scaiano, J. C. Tetrahedron Lett. 1997, 38, 5147 https://doi.org/10.1016/S0040-4039(97)01115-5
  18. Androas, J.; Kresge, A. J. J. Am. Chem. Soc. 1992, 114, 5643 https://doi.org/10.1021/ja00040a025
  19. Seikaly, H. R.; Tidwell, T. T. Tetrahedron 1986, 42, 2587 https://doi.org/10.1016/S0040-4020(01)90545-9
  20. Raspoet, G.; Nguyen, M. T.; Kelly, S.; Hegarty, A. F. J. Org. Chem. 1998, 63, 9669 https://doi.org/10.1021/jo980642t
  21. Briody, J. M.; Satchell, D. P. N. Tetrahedron 1966, 22, 2649 https://doi.org/10.1016/S0040-4020(01)99057-X
  22. Lillford, P. J.; Satchell, D. P. N. J. Chem. Soc. B 1967, 360 https://doi.org/10.1039/j29670000360
  23. Allen, A. D.; Tidwell, T. T. J. Org. Chem. 1999, 64, 266 https://doi.org/10.1021/jo982054l
  24. Wolfe, S.; Kim, C.-K.; Yang, K.; Weinberg, N.; Shi, Z. J. Am. Chem. Soc. 1995, 117, 4240 https://doi.org/10.1021/ja00120a005
  25. Wolfe, S.; Shi, Z.; Yang, K.; Ro, S.; Weinberg, N.; Kim, C.-K. Can. J. Chem. 1998, 76, 114 https://doi.org/10.1139/cjc-76-1-114
  26. Wolfe, S.; Kim, C.-K.; Yang, K. Can. J. Chem. 1994, 72, 1044 https://doi.org/10.1139/v94-132
  27. Wolfe, S.; Ro, S.; Kim, C.-K.; Shi, Z. Can. J. Chem. 2001, 79, 1238 https://doi.org/10.1139/cjc-79-8-1238
  28. Wolfe, S.; Akuche, C.; Ro, S.; Wilson, M.-C.; Kim, C.- K.; Shi, Z. Can. J. Chem. 2003, 81, 915 https://doi.org/10.1139/v03-123
  29. Diaz, N.; Suarea, D.; Sordo, T. L. J. Org. Chem. 1999, 64, 3281 https://doi.org/10.1021/jo990137b
  30. Lopez, R.; Menendez, M. I.; Diaz, N.; Suarea, D.; Campomanes, P.; Sordo, T. L. Recent Research Developments in Physical Chemistry 2000, 4, 157
  31. Onsager, L. J. Am. Chem. Soc. 1938, 58, 1486
  32. Miertus, S.; Tomasi, J. Chem. Phys. 1982, 65, 239 https://doi.org/10.1016/0301-0104(82)85072-6
  33. Foresman, J. B.; Keith, T. A.; Wiberg, K. B.; Snoonian, J.; Frisch, M. J. J. Phys. Chem. 1996, 100, 16098 https://doi.org/10.1021/jp960488j
  34. Liptak, M. D.; Gross, K. C.; Seybold, P. G.; Feldgus, S.; Shields, G. C. J. Am. Chem. Soc. 2002, 124, 6421 https://doi.org/10.1021/ja012474j
  35. Ilieva, S.; Galabov, B.; Musaev, D. G.; Morokuma, K.; Scharfer III, H. F. J. Org. Chem. 2003, 68, 1496 https://doi.org/10.1021/jo0263723
  36. Barra, M.; Fisher, T. A.; Cernigliaro, G. J.; Sinta, R.; Scaiano, J. C. J. Am. Chem. Soc. 1992, 114, 2630 https://doi.org/10.1021/ja00033a041
  37. Chelain, E.; Goumont, R.; Hamon, L.; Parlier, A.; Rudler, M.; Rudler, H.; Daran, J.-C.; Vaissermann, J. J. Am. Chem. Soc. 1992, 114, 8088 https://doi.org/10.1021/ja00047a018
  38. Qiao, G. G.; Andraos, J.; Wentrup, C. J. Am. Chem. Soc. 1996, 118, 5634 https://doi.org/10.1021/ja9607190
  39. Wagner, B. D.; Zgierski, M. Z.; Lusztyk, J. J. Am. Chem. Soc. 1994, 116, 6433 https://doi.org/10.1021/ja00093a053
  40. Lippert, T.; Koskelo, A.; Stoutland, P. O. J. Am. Chem. Soc. 1996, 118, 1551 https://doi.org/10.1021/ja9536429
  41. Palomo, C.; Cossio, F. P.; Cuevas, C.; Lecea, B.; Mielgo, A.; Roman, P.; Luque, A.; Martinez-Ripoll, M. J. Am. Chem. Soc. 1992, 114, 9360 https://doi.org/10.1021/ja00050a016
  42. Visser, P.; Zuhse, R.; Wong, M. W.; Wentrup, C. J. Am. Chem. Soc. 1996, 118, 12598 https://doi.org/10.1021/ja962672o
  43. Wang, J.-L.; Toscano, J. P.; Platz, M. S.; Nikolaev, V.; Popic, V. J. Am. Chem. Soc. 1995, 117, 5477 https://doi.org/10.1021/ja00125a007
  44. Andraos, J.; Chiang, Y.; Huang, C.-G.; Kresge, A. J.; Scaiano, J. C. J. Am. Chem. Soc. 1993, 115, 10605 https://doi.org/10.1021/ja00076a019
  45. Barra, M.; Fisher, T. A.; Cernigliaro, G. J.; Sinta, R.; Scaiano, J. C. J. Am. Chem. Soc. 1992, 114, 2630 https://doi.org/10.1021/ja00033a041
  46. Boate, D. R.; Johnston, L. J.; Kwong, P. C.; Lee-Ruff, E.; Scaiano, J. C. J. Am. Chem. Soc. 1990, 112, 8858 https://doi.org/10.1021/ja00180a030
  47. Qiao, G. G.; Androas, J.; Wentrup, C. J. Am. Chem. Soc. 1996, 118, 5634 https://doi.org/10.1021/ja9607190
  48. Visser, P.; Zuhse, R.; Wong, M. W.; Wentrup, C. J. Am. Chem. Soc. 1996, 118, 12598 https://doi.org/10.1021/ja962672o
  49. Chelain, E.; Goumont, R.; Hamon, L.; Parlier, A.; Rudler, M.; Rudler, H.; Daran, J.-C.; Vaissermann, J. J. Am. Chem. Soc. 1992, 114, 8088 https://doi.org/10.1021/ja00047a018
  50. Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995 https://doi.org/10.1021/jp9716997
  51. Liptak, M. D.; Gross, K. C.; Seybold, P. G.; Feldgus, S.; Shields, G. C. J. Am. Chem. Soc. 2002, 124, 6421 https://doi.org/10.1021/ja012474j
  52. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A. Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.6.; Gaussian, Inc.: Pittsburgh, PA, 1998
  53. Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523 https://doi.org/10.1021/j100377a021
  54. Carpenter, J. E.; Weinhold, F. J. Mol. Struc. (Theochem) 1988, 169, 41 https://doi.org/10.1016/0166-1280(88)80248-3
  55. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899 https://doi.org/10.1021/cr00088a005
  56. Lee, I.; Kim, C. K.; Li, H. G.; Lee, B.-S.; Lee, H. W. Chem. Phys. Lett. 2000, 320, 307 https://doi.org/10.1016/S0009-2614(00)00204-9
  57. Isaacs, N. Physical Organic Chemistry, 2nd ed.; Longman Scientific and Technical: Harlow, 1995; p 118
  58. Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553 https://doi.org/10.1080/00268977000101561
  59. Jansen, H. B.; Ros, P. Chem. Phys. Lett. 1969, 3, 140 https://doi.org/10.1016/0009-2614(69)80118-1
  60. Wolfe, S.; Shi, Z.; Yang, K.; Ro, S.; Weinberg, N.; Kim, C.-K. Can. J. Chem. 1998, 76, 114 https://doi.org/10.1139/cjc-76-1-114
  61. Kestner, N. R.; Combariza, J. E. Reviews in Computational Chemistry; Lipkowitz, K. B.; Boyd, D. B., Eds.; Wiley-VCH: New York, 1999; chap. 2

Cited by

  1. Ketenes and Other Cumulenes as Reactive Intermediates vol.113, pp.9, 2013, https://doi.org/10.1021/cr3005263
  2. Ammonolysis of ketene as a potential source of acetamide in the troposphere: a quantum chemical investigation vol.20, pp.19, 2018, https://doi.org/10.1039/C8CP01650J
  3. Amination of phenylketenes. Substituent effect on amine‐catalyzed tautomerization of amide enol vol.26, pp.12, 2008, https://doi.org/10.1002/poc.3162
  4. Preparation and characterization of the enol of acetamide: 1-aminoethenol, a high-energy prebiotic molecule vol.11, pp.45, 2008, https://doi.org/10.1039/d0sc04906a