• Title/Summary/Keyword: NGII DEM

Search Result 13, Processing Time 0.017 seconds

Accuracy Evaluation of DEM generated from Satellite Images Using Automated Geo-positioning Approach

  • Oh, Kwan-Young;Jung, Hyung-Sup;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.69-77
    • /
    • 2017
  • S The need for an automated geo-positioning approach for near real-time results and to boost cost-effectiveness has become increasingly urgent. Following this trend, a new approach to automatically compensate for the bias of the rational function model (RFM) was proposed. The core idea of this approach is to remove the bias of RFM only using tie points, which are corrected by matching with the digital elevation model (DEM) without any additional ground control points (GCPs). However, there has to be a additional evaluation according to the quality of DEM because DEM is used as a core element in this approach. To address this issue, this paper compared the quality effects of DEM in the conduct of the this approach using the Shuttle Radar Topographic Mission (SRTM) DEM with the spatial resolution of 90m. and the National Geographic Information Institute (NGII) DEM with the spatial resolution of 5m. One KOMPSAT-2 stereo-pair image acquired at Busan, Korea was used as experimental data. The accuracy was compared to 29 check points acquired by GPS surveying. After bias-compensation using the two DEMs, the Root Mean Square (RMS) errors were less than 6 m in all coordinate components. When SRTM DEM was used, the RMSE vector was about 11.2m. On the other hand, when NGII DEM was used, the RMSE vector was about 7.8 m. The experimental results showed that automated geo-positioning approach can be accomplished more effectively by using NGII DEM with higher resolution than SRTM DEM.

A Strategy for Production of Digital Elevation Models in Korea

  • Lee, Chung-Kyung;CHO, Kyu-Jon;RYU, Joong-Hi
    • Korean Journal of Geomatics
    • /
    • v.3 no.2
    • /
    • pp.107-114
    • /
    • 2004
  • The National Geographic Information Institute (NGII) in korea, through the National Geographic Information System (NGIS) Program, has prepared to generate and disseminate digital elevation data for Korea. This is a pilot research to propose a policy for production, maintenance, and supply of Korea Digital Elevation Data(KDED). Customer demands for accuracy and resolution of DEM was surveyed through a questionnaire. In order to investigate the quality, the technical efficiency and the production cost, a tentative DEM in a small test site was generated based on digital topographic maps (original paper map scale 1:5,000), analytical plotter, and LIDAR. The Accuracy standard for KDED was derived based on source data generation methods. As a result of this research, a uniformly spaced grid model was recommended for KDED. Its preferable grid space is 5m in urban areas and its vicinity, and 10m in field and mountainous area. LIDAR has been valuated as a proper KDED generation method fulfilling customers' demands for the accuracy.

  • PDF

Generation of DEM Using Elevation and Accuracy Assessment of DEM (DEM병합을 통한 수치표고모델의 정확도 평가)

  • 김감래;곽강율;정해진;김명배
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.263-266
    • /
    • 2004
  • We make DEM of the area that elevation value varies rapidly by the aid. This study evaluates the accuracy and workability between the existing DEM making mathod by processing break line and the DEM absorption method by using the program like ARC TIN or AML. The object data of DEM generation is 1/5,000 digital map publicated by NGII and this study uses 100pieces of map as the criteria. We correct the error by Geoconv and generate DEM by using ARC TIN, ARC VIEW. Accuracy Evaluation accomplished by drawing 100 points from 1/5000 digital map.

  • PDF

Comparison and Analysis of Matching DEM Using KOMPSAT-3 In/Cross-track Stereo Pair (KOMPSAT-3 In/Cross-track 입체영상을 이용한 매칭 DEM 비교 분석)

  • Oh, Kwan-Young;Jeong, Eui-Cheon;Lee, Kwang-Jae;Kim, Youn-Soo;Lee, Won-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1445-1456
    • /
    • 2018
  • The purpose of this study is to compare the quality and characteristics of matching DEMs by using KOMPSAT-3 stereo pair capture in in-track and cross-track. For this purpose, two stereo pairs of KOMPSAT-3 were collected that were taken in the same area. The two stereo pairs have similar stereo geometry elements such as B/H, convergence angle. Sensor modeling for DEM production was performed with RFM affine calibration using multiple GCPs. The GCPs used in the study were extracted from the 0.25 m ortho-image and 5 meter DEM provided by NGII. In addition, matching DEMs were produced at the same resolution as the reference DEMs for a comparison analysis. As a result of the experiment, the horizontal and vertical errors at the CPs indicated an accuracy of 1 to 3 pixels. In addition, the shapes and accuracy of two DEMs produced in areas where the effects of natural or artificial surface land were low were almost similar.

A Proposal for Generation of Digital Elevation Models in Korea

  • Lee, Chang-Kyung;Park, Byung-Gil;Kim, Young-An;Min Heo
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.02a
    • /
    • pp.73-81
    • /
    • 2004
  • National Geographic Information Institute (NGII) in Korea, through National Geographic Information System (NGIS) Program, has prepared to generate and disseminate digital elevation data for Korea. This is a pilot research to propose a policy for generation, maintenance, and supply of Korea Digital Elevation Data (KDED). Customer demands for accuracy and resolution of DEM was surveyed through questionnaire. In order to investigate the quality, the technical efficiency and the production cost, a tentative DEM in a small test site was generated based on digital topographic maps (original paper map scale 1 :5,000), analytical plotter, and LIDAR. Accuracy standard for KDED was derived based on source data and generation methods. As results of this research, we recommend uniformly spaced grid model for KDED. Its preferable grid space is 5m in urban and its vicinity; and 10m in field and mountainous area. LIDAR has been valuated as a proper KDED generation method fulfilling customers demand for the accuracy.

  • PDF

Improving the Slope Calculation Method for Evaluating the Feasibility of the Land Development (토지 개발 적정성 평가를 위한 경사도 계산 방법 개선)

  • Lee, Byoung Kil
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.3
    • /
    • pp.85-92
    • /
    • 2016
  • Slope is one of the most important factor in land development permission standards. In guideline of "Land Suitability Assessment" or "Forest Land Conversion Standard", average slope can be measured using digital map and GIS for target area. Inputs in slope calculation are 1/5,000 digital map of NGII(National Geographic Information Institute) or digital information of Korea Land Information System. Many confusions occur in the field, as there is no standard for slope calculation and are lots of slope calculation methods using contour lines or DEM derived from them. Avoiding these confusions, this study was intended to propose a standardized method for slope calculation and a selection method for a suitable resolution. In this study, using DEM of optimum grid size according to the complexity of topography with finite difference method is suggested as improved slope calculation method, after comparing several representative slope calculation methods.

Soil Erosion Assessment Using RS/GIS for Watershed Management in Dukchun River Basin, a Tributary of Namgang and Jinyang Lake

  • Cho Byung Jin;Yu Chan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.7
    • /
    • pp.3-12
    • /
    • 2004
  • The need to predict the rate of soil erosion, both under existing conditions and those expected to occur following soil conservation practice, has been led to the development of various models. In this study Morgan model especially developed for field-sized areas on hill slopes was applied to assess the rate of soil erosion using RS/GIS environment in the Dukchun river basin, one of two tributaries flowing into Jinyang lake. In order to run the model, land cover mapping was made by the supervised classification method with Landsat TM satellite image data, the digital soil map was generated from scanning and screen digitizing from the hard copy of soil maps, digital elevation map (DEM) in order to generate the slope map was made by the digital map (DM) produced by National Geographic Information Institute (NGII). Almost all model parameters were generated to the multiple raster data layers, and the map calculation was made by the raster based GIS software, IL WIS which was developed by ITC, the Netherlands. Model results show that the annual soil loss rates are 5.2, 18.4, 30.3, 58.2 and 60.2 ton/ha/year in forest, paddy fields, built-up area, bare soil, and upland fields respectively. The estimated rates seemed to be high under the normal climatic conditions because of exaggerated land slopes due to DEM generation using 100 m contour interval. However, the results were worthwhile to estimate soil loss in hilly areas and the more precise result could be expected when the more accurate slope data is available.

Orthophoto and DEM Generation Using Low Specification UAV Images from Different Altitudes (고도가 다른 저사양 UAV 영상을 이용한 정사영상 및 DEM 제작)

  • Lee, Ki Rim;Lee, Won Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.5
    • /
    • pp.535-544
    • /
    • 2016
  • Even though existing methods for orthophoto production using expensive aircraft are effective in large areas, they are drawbacks when dealing with renew quickly according to geographic features. But, as UAV(Unmanned Aerial Vehicle) technology has advanced rapidly, and also by loading sensors such as GPS and IMU, they are evaluates that these UAV and sensor technology can substitute expensive traditional aerial photogrammetry. Orthophoto production by using UAV has advantages that spatial information of small area can be updated quickly. But in the case of existing researches, images of same altitude are used in orthophoto generation, they are drawbacks about repetition of data and renewal of data. In this study, we targeted about small slope area, and by using low-end UAV, generated orthophoto and DEM(Digital Elevation Model) through different altitudinal images. The RMSE of the check points is σh = 0.023m on a horizontal plane and σv = 0.049m on a vertical plane. This maximum value and mean RMSE are in accordance with the working rule agreement for the aerial photogrammetry of the National Geographic Information Institute(NGII) on a 1/500 scale digital map. This paper suggests that generate orthophoto of high accuracy using a different altitude images. Reducing the repetition of data through images of different altitude and provide the informations about the spatial information quickly.

Analysis of Very High Resolution Solar Energy Based on Solar-Meteorological Resources Map with 1km Spatial Resolution (1km 해상도 태양-기상자원지도 기반의 초고해상도 태양 에너지 분석)

  • Jee, JoonBum;Zo, Ilsung;Lee, Chaeyon;Choi, Youngjean;Kim, Kyurang;Lee, KyuTae
    • New & Renewable Energy
    • /
    • v.9 no.2
    • /
    • pp.15-22
    • /
    • 2013
  • The solar energy are an infinite source of energy and a clean energy without secondary pollution. The global solar energy reaching the earth's surface can be calculated easily according to the change of latitude, altitude, and sloped surface depending on the amount of the actual state of the atmosphere and clouds. The high-resolution solar-meteorological resource map with 1km resolution was developed in 2011 based on GWNU (Gangneung-Wonju National University) solar radiation model with complex terrain. The very high resolution solar energy map can be calculated and analyzed in Seoul and Eunpyung with topological effect using by 1km solar-meteorological resources map, respectively. Seoul DEM (Digital Elevation Model) have 10m resolution from NGII (National Geographic Information Institute) and Eunpyeong new town DSM (Digital Surface Model) have 1m spatial resolution from lidar observations. The solar energy have small differences according to the local mountainous terrain and residential area. The maximum bias have up to 20% and 16% in Seoul and Eunpyung new town, respectively. Small differences are that limited area with resolutions. As a result, the solar energy can calculate precisely using solar radiation model with topological effect by digital elevation data and its results can be used as the basis data for the photovoltaic and solar thermal generation.

Updating Building Layer of Digital Map Using Airborne Digital Camera Image (디지털항공영상을 이용한 수치지도의 건물레이어 갱신)

  • Hwang, Won-Soon;Kim, Kam-Rae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.4
    • /
    • pp.31-39
    • /
    • 2007
  • As the availability of images from airborne digital camera with high resolution is expanded, a lot of concern are shown about the production of orthoimage and digital map. This study presents the method of updating digital map using orthoimage from airborne digital camera image. Images were georectified using GPS surveying data. For the generation of orthoimage, Lidar DEM was used. The absolute positional accuracy of orthoimage was evaluated using GPS surveying data. And that of the building layer of digital map was estimated using the existed digital map at the scale of 1:1,000. The absolute positional accuracy of orthoimage was as followed: RMSE in X and Y were ${\pm}0.076m$ and ${\pm}0.294m$. The RMSE of the building layer were ${\pm}0.250m$ and ${\pm}0.210m$ in X and Y directions, respectively. The RMSE of the digital map using orthoimage from Aerial Digital Camera image fell within allowable error range established by NGII. Consequently, updating digital map using orthoimage from Aerial Digital Camera image can be applied to various fields including the construction of the framework data and the GIS of local government.

  • PDF