• 제목/요약/키워드: NF2

검색결과 2,138건 처리시간 0.037초

Propenone 유도체의 $NF-{\kappa}B$ 활성 억제 및 IL-8 유도에 의한 단핵구의 장 상피세포 부착 억제 효과 (Inhibitory Effects of Propenone Derivatives on $NF-{\kappa}B$ activity and IL-8-Induced Monocyte Adhesion to Colon Epithelial Cells)

  • 박수영;김경진;이종숙;이응석;김정애
    • 약학회지
    • /
    • 제52권1호
    • /
    • pp.62-66
    • /
    • 2008
  • In this study, we examined the inhibitory effects of propenone derivatives, 1,3-diphenyl-propenone (DPhP), 3-phenyl-1-thiophen-2-yl-propenone (PhT2P), 3-phenyl-1-thiophen-3-yl-propenone (PhT3P) and 1-furan-2-yl-3-phenyl-propenone (FPhP), on $TNF-{\alpha}$-induced nuclear factor (NF)-${\kappa}B$ activity and interleukin (IL)-8-induced monocyte adhesion to colon epithelial cells. 1-Furan-2-yl-3-pyridin-2-yl-propenone (FPP-3) that is previously reported as a $NF-{\kappa}B$ inhibitor suppressed $TNF-{\alpha}$-induced monocyte-epithelial cell adhesion in a concentration-dependent manner. The propenone derivatives, DPhP, PhT2P, PhT3P, FPhP, also inhibited $TNF-{\alpha}$-induced $NF-{\kappa}B$ activation in a similar degree to FPP-3. In a DPPH radical scavenging assay, none of the compounds showed DPPH radical scavenging activity, indicating that the inhibitory actions of the propenone derivatives on redox-sensitive $NF-{\kappa}B$ activity is not due to a simple free radical scavenging activity. In addition, the propenone derivatives also suppressed the IL-8-induced monocyte adhesion to colon epithelial cells. Furthermore, the effective concentrations of the propenone derivatives on both $NF-{\kappa}B$ activation as well as IL-8 induced monocyte-epithelial cell adhesion were 1000 times lower than 5-aminosalicylic acid (5-ASA), a clinically used drug for inflammatory bowel disease. These results suggest that the propenone derivatives may be a potential lead having a strong inhibitory activity against inflammatory cytokine-induced epithelial inflammation.

막분리한 순물의 농축분말 첨가가 국수의 품질에 미치는 영향 (Effects of Membrane-filtered Powder of Sunmul on the Quality Characteristics of Noodles)

  • 정해정;최민희;김우정
    • 한국식품영양과학회지
    • /
    • 제35권2호
    • /
    • pp.199-204
    • /
    • 2006
  • 본 연구에서는 NF 막 분리에 의하여 제조된 농축 분말을 사용하여 국수를 제조하고 특성을 살펴봄으로써 새로운 기능성 식품소재로의 활용가능성을 검토하였다. NF 분말의 첨가량에 따른 밀가루 혼합분의 점도 변화는 NF분말 첨가량이 증가함에 따라 최고점도(peak), 최저점도(trough), 최종점도(final viscosity)가 감소하는 경 향을 보였다. 국수의 조리 후 무게 및 부피증가율은 NF분말 첨가량이 증가할수록 높았고 국물의 탁도 역시 NF분말 첨가 국수가 대조군보다 높아 고형분의 손실이 큰 것으로 나타났다. 색도 측정결과 생국수와 조리 국수의 L값은 시험군 간에 큰 차이가 없었고 a값은 (-)값으로 녹색을 나타냈고 b값은 (+)값으로 황색을 나타냈으며 NF분말 첨가량이 증가할수록 모두 증가하였다. 생국수의 경도는 NF 분말 첨가량 증가에 따라 감소하였고 응집성, 탄성, 껌성, 깨짐성은 시료간에 뚜렷한 경향을 보이지 않았다. 조리 후에는 응집성을 제외한 경도, 탄성, 껌성, 깨짐성 등의 조직감 특성에서 NF분말 첨가량이 증가 할수록 대조군에 비해 크게 낮아지는 경향을 나타내었다. 관능검사결과 색과 냄새는 NF 분말 첨가군이 대조군보다 높은 점수로 평가되었고 부드러운 정도는 NF 분말 첨가군과 대조군 간에 유의적인 차이가 없었다. Stickiness는 NF 분말 첨가군이 대조군보다 강한 것으로 평가되었고 전체적인 바람직성은 대조군과 NF분말 $3\%$ 첨가까지 모두 차이가 없는 것으로 평가되었고 $5\%$ 첨가군만이 유의적으로 낮은 점수를 받았다. 이상의 결과로 볼 때 NF분말을 이용하여 첨가수준을 적절히 조절하고 제조방법을 다양화한다면 기능성이 강화된 국수로서 그 이용가치가 있을 것으로 기대된다. 제품에서는 표시기준에 의거 표시된 소르빈산 $0.02\%$보다 15배$(0.30\%)$ 높은 검출결과가 나왔다. 결론적으로 경인지역 초등학교주변에서 판매되고 있는 식품은 식품의 제조단계에서부터 유통, 판매에 이르기까지 안전을 위한 관리방안이 조속히 수립되어야 한다.hrombin 부하 후 증강되지는 않았다. $Ins(1,4,5)P_3$ 증가에 이어서, $[Ca^{2+}]_i$은 thrombin 부하 후 20초에 최고점에 이르며, 이러한$[Ca^{2+}]_i$, 증가는 세 약물에 의하여 현저하게 억제되었다. 혈소판 단백인산화에 대해서, thrombin은 $41{\sim}43\;kDa$ 및 20kDa 단백인산화를 현저하게 증가시켰으며, 이는 AMT, SRT 및 CPZ에 의하여 억제되었다. CPZ, AMT 및 SRT 등의 세 약물은 유의한 항응집효과와 thromboxane생성억제 효과를 나타냈으며, 이들 약물에 의한 protein kinase C 활성억제 및 $Ins(1,4,5)P_3$의 함량증가는 각각 이들약물의 항응집효과 및 항우울성 작용기전과 연관될 수 있음을 시사한다.in banding pattern을 분석한 결과 C. militaris, C. roseostromata, C. kyushuensis는 근연종으로 clustering 되었으며 C. scarabaeicola, Phytocordyceps ninchukiospora는 비교적 유연관계가 먼 것으로 나타났다. 경우 $logk=11.1140-4.1226{\times}10^3(1/T)$, waxy corn starch의 경우 $logk=10.

Paricalcitol attenuates indoxyl sulfate-induced apoptosis through the inhibition of MAPK, Akt, and NF-κB activation in HK-2 cells

  • Park, Jung Sun;Choi, Hoon In;Bae, Eun Hui;Ma, Seong Kwon;Kim, Soo Wan
    • The Korean journal of internal medicine
    • /
    • 제34권1호
    • /
    • pp.146-155
    • /
    • 2019
  • Background/Aims: Indoxyl sulfate (IS) is a uremic toxin and an important causative factor in the progression of chronic kidney disease. Recently, paricalcitol (19-nor-1,25-dihydroxyvitamin D2) was shown to exhibit protective effects in kidney injury. Here, we investigated the effects of paricalcitol treatment on IS-induced renal tubular injury. Methods: The fluorescent dye 2',7'-dichlorofluorescein diacetate was used to measure intracellular reactive oxygen species (ROS) following IS administration in human renal proximal tubular epithelial (HK-2) cells. The effects of IS on cell viability were determined using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays and levels of apoptosis-related proteins (Bcl-2-associated protein X [Bax] and B-cell lymphoma 2 [Bcl-2]), nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) p65, and phosphorylation of mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) were determined by semiquantitative immunoblotting. The promoter activity of $NF-{\kappa}B$ was measured by luciferase assays and apoptosis was determined by f low cytometry of cells stained with f luorescein isothiocyanate-conjugated Annexin V protein. Results: IS treatment increased ROS production, decreased cell viability and induced apoptosis in HK-2 cells. IS treatment increased the expression of apoptosis-related protein Bax, decreased Bcl-2 expression, and activated phosphorylation of MAPK, $NF-{\kappa}B$ p65, and Akt. In contrast, paricalcitol treatment decreased Bax expression, increased Bcl-2 expression, and inhibited phosphorylation of MAPK, $NF-{\kappa}B$ p65, and Akt in HK-2 cells. $NF-{\kappa}B$ promoter activity was increased following IS, administration and was counteracted by pretreatment with paricalcitol. Additionally, flow cytometry analysis revealed that IS-induced apoptosis was attenuated by paricalcitol treatment, which resulted in decreased numbers of fluorescein isothiocyanate-conjugated Annexin V positive cells. Conclusions: Treatment with paricalcitol inhibited IS-induced apoptosis by regulating MAPK, $NF-{\kappa}B$, and Akt signaling pathway in HK-2 cells.

Hsp70와 IKKγ에 의한 NF-κB 활성억제의 상승효과 (Hsp70 and IKKγ Synergistically Suppress the Activation of NF-κB)

  • 김미정;김가혜;김문정;김진익;최혜정;문자영;주우홍;김동완
    • 생명과학회지
    • /
    • 제26권9호
    • /
    • pp.991-998
    • /
    • 2016
  • NF-κB는 anti-apoptotic gene을 유도하는 전사인자로서 대부분의 세포의 생존에 필요하다. 그러나 NF-κB가 많은 종류의 암세포에서 지속적으로 과다 활성화됨이 알려지면서 NF-κB의 활성억제가 암의 예방과 치료에 유효하다는 점이 알려지게 되었다. 한편, Hsp70가 NF-κB의 활성을 조절한다는 사실이 알려지면서 Hsp70를 이용한 암예방과 치료가 주목받게 되었으나 아직 Hsp70에 의한 NF-κB의 활성조절기전은 명확하지 않다. 본 연구에서는 Hsp70에 의한 NF-κB의 활성조절과정에서 IKK complex의 구성성분인 IKKγ의 역할을 검토하였다. IKKγ의 wild type과 deletion mutants를 이용하여 Hsp70와 관련된 NF-κB의 활성조절을 연구한 결과 Hsp70는 NF-κB의 활성화를 억제하였으며, 이러한 억제효과는 IKKγ가 과발현되었을 때 더욱 증가하였다. 또한 IKKγ의 N-말단의 IKKβ 결합부위와 C-말단의 Leucine zipper 및 Zinc finger부위는 Hsp70와 연관된 NF-κB억제작용에 필요하지 않는 것으로 나타났으며, Hsp70와 IKKγ에 의한 NF-κB의 활성억제는 IκBα의 인산화와 분해를 저해함에 의해 일어나는 것으로 나타났다. 또한 RAW264.7 macrophage세포에서 LPS에 의한 COX-2의 발현유도는 Hsp70와 IKKγ가 동시에 발현 되었을 때 가장 효과적으로 억제되었다. 이상의 결과로부터 Hsp70에 의한 NF-κB의 활성억제작용은 IKKγ에 의해 상승됨을 알 수 있었으며, Hsp70와 IKKγ를 적절히 이용하면 NF-κB의 과다활성에 의해 발생하는 각종 질병의 예방과 치료에 도움을 줄 수 있을 것으로 기대된다.

TNF-α로 유도된 HaCaT 각질형성세포의 염증반응에서 해죽순의 항염증 효과 (Anti-inflammatory Effect of Nypa fruticans Wurmb. on tumor necrosis factor (TNF)-α-induced Inflammatory response in HaCaT cells)

  • 배기상;박성주
    • 대한본초학회지
    • /
    • 제34권1호
    • /
    • pp.51-57
    • /
    • 2019
  • Objectives : Nypa fruticans Wurmb. (NF) have been used as a traditional medicine to treat inflammatory diseases in East-South Asia. However, it is largely undiscovered whether NF water extract could exhibit anti-inflammatory activities against tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-induced inflammatory responses on human keratinocytes, HaCaT cells. Therefore, this study was aimed to investigate the anti-inflammatory activity of NF water extract on TNF-${\alpha}$-induced inflammatory responses in HaCaT cells. Methods : To investigate the anti-inflammatory activites of NF water extract in HaCaT cells, the inflammatory model of HaCaT cells was established under a suitable concentration (10 ng/ml) of human TNF-${\alpha}$ (hTNF-${\alpha}$). HaCaT keratinocyte cells were pre-treated with NF water extract for 1 h, and then stimulated with hTNF-${\alpha}$. Then, the cells were harvested to measure the inflammatory mediators such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and prostaglandin $E_2$ ($PGE_2$), and pro-inflammatory cytokine including TNF-${\alpha}$ and interleukin (IL)-6. In addition, we examined the inhibitory mechanisms of NF, mitogen activated protein kinases (MAPKs) and inhibitory kappa B alpha ($I{\kappa}-B{\alpha}$) Results : The treatment of NF inhibited the hTNF-${\alpha}$-induced elevation of iNOS, COX-2, and $PGE_2$ in HaCaT cells. In addition, NF treatment inhibited the hTNF-${\alpha}$-induced elevation of TNF-${\alpha}$ and IL-6. Furthermore, NF treatment inhibited the activation of MAPKs but not degradation of $I{\kappa}-B{\alpha}$. Conclusions : Taken together, our result suggest that treatment of NF could inhibit the hTNF-${\alpha}$-induced inflammatory responses via deactivation of MAPKs in HaCaT cells. This study could suggest that NF could be a beneficial agent to prevent skin damage or inflammation.

Effect of Bcl-2 on Apoptosis and Transcription Factor NF-κB Activation Induced by Adriamycin in Bladder Carcinoma BIU87 Cells

  • Zhang, Guo-Jun;Zhang, Zhe
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권4호
    • /
    • pp.2387-2391
    • /
    • 2013
  • Resistance to apoptosis is a major obstacle preventing effective therapy for malignancies. Bcl-2 plays a significant role in inhibiting apoptosis. We reconstructed a stable human Bcl-2 transfected cell line, BIU87-Bcl-2, that was derived from the transfection of human bladder carcinoma cell line BIU87 with a plasmid vector containing recombinant Bcl-2 [pcDNA3.1(+)-Bcl-2]. A cell line transfected with the plasmid alone [pcDNA3.1(+)-neo] was also established as a control. BIU87 and BIU87-neo proved sensitive to adriamycin induced apoptosis, while BIU87-Bcl-2 was more resistant. In view of the growing evidence that NF-${\kappa}B$ may play an important role in regulating apoptosis, we determined whether Bcl-2 could modulate the activity of NF-${\kappa}B$ in bladder carcinoma cells. Stimulation of BIU87, BIU87-neo and BIU87-Bcl-2 with ADR resulted in an increase expression of NF-${\kappa}B$ (p<0.001). The expression of NF-${\kappa}B$ in BIU87-Bcl-2 was higher than in the other two cases, with a concomitant reduction in the $I{\kappa}B{\kappa}$ protein level. These results suggest that the overexpression of Bcl-2 renders human bladder carcinoma cells resistant to adriamycin-induced cytotoxicity and there is a link between Bcl-2 and the NF-${\kappa}B$ signaling pathway in the suppression of apoptosis.

Oleanolic acid regulates NF-κB signaling by suppressing MafK expression in RAW 264.7 cells

  • Hwang, Yu-Jin;Song, Jaewhan;Kim, Haeng-Ran;Hwang, Kyung-A
    • BMB Reports
    • /
    • 제47권9호
    • /
    • pp.524-529
    • /
    • 2014
  • Oxidative stress and inflammation are common to many pathological conditions. Defense mechanisms protect cells from oxidative stress, but can become over-activated following injury and inflammation. NF-${\kappa}B$ and Nrf2 transcription factors regulate proinflammatory and antioxidant gene expression, respectively. Studies have shown that many natural dietary compounds regulate NF-${\kappa}B$ and Nrf2, preventing inflammation and oxidative stress. Here, we report major compounds of Prunella vulgaris var. lilacina such as rosmarinic acid, oleanolic acid, ursolic acid and caffeic acid as a potential therapeutic for oxidative stress and inflammation. The major compounds exhibited high anti-inflammatory activity, inhibiting NO, PGE2 production, NF-${\kappa}B$ expression and activating Nrf2 expression. In addition, we examined the effect of major compounds on MafK expression. Among the compounds, oleanolic acid significantly decreased MafK expression and MafK-mediated p65 acetylation. These findings suggest that oleanolic acid as NF-${\kappa}B$ inhibitors can potentially be used in therapeutic applications for the treatment of oxidative stress-induced diseases.

Ginsenoside compound K inhibits nuclear factor-kappa B by targeting Annexin A2

  • Wang, Yu-Shi;Zhu, Hongyan;Li, He;Li, Yang;Zhao, Bing;Jin, Ying-Hua
    • Journal of Ginseng Research
    • /
    • 제43권3호
    • /
    • pp.452-459
    • /
    • 2019
  • Background: Ginsenoside compound K(C-K), a major metabolite of ginsenoside, exhibits anticancer activity in various cancer cells and animal models. A cell signaling study has shown that C-K inhibited nuclear factor-kappa B ($NF-{\kappa}B$) pathway in human astroglial cells and liver cancer cells. However, the molecular targets of C-K and the initiating events were not elucidated. Methods: Interaction between C-K and Annexin A2 was determined by molecular docking and thermal shift assay. HepG2 cells were treated with C-K, followed by a luciferase reporter assay for $NF-{\kappa}B$, immunofluorescence imaging for the subcellular localization of Annexin A2 and $NF-{\kappa}B$ p50 subunit, coimmunoprecipitation of Annexin A2 and $NF-{\kappa}B$ p50 subunit, and both cell viability assay and plate clone formation assay to determine the cell viability. Results: Both molecular docking and thermal shift assay positively confirmed the interaction between Annexin A2 and C-K. This interaction prevented the interaction between Annexin A2 and $NF-{\kappa}B$ p50 subunit and their nuclear colocalization, which attenuated the activation of $NF-{\kappa}B$ and the expression of its downstream genes, followed by the activation of caspase 9 and 3. In addition, the overexpression of Annexin A2-K320A, a C-K binding-deficient mutant of Annexin A2, rendered cells to resist C-K treatment, indicating that C-K exerts its cytotoxic activity mainly by targeting Annexin A2. Conclusion: This study for the first time revealed a cellular target of C-K and the molecular mechanism for its anticancer activity.

No Relevance of NF-${\kappa}B$ in the Transcriptional Regulation of Human Nanog Gene in Embryonic Carcinoma Cells

  • Seok, Hyun-Jeong;Kim, Young-Eun;Park, Jeong-A;Lee, Young-Hee
    • 한국발생생물학회지:발생과생식
    • /
    • 제15권1호
    • /
    • pp.25-30
    • /
    • 2011
  • Embryonic stem (ES) cells can self-renew maintaining the undifferentiated state. Self renewal requires many factors such as Oct4, Sox2, FoxD3, and Nanog. NF-${\kappa}B$ is a transcription factor involved in many biological activities. Expression and activity of NF-${\kappa}B$ increase upon differentiation of ES cells. Reportedly, Nanog protein directly binds to NF-${\kappa}B$ protein and inhibits its activity in ES cells. Here, we found a potential binding site of NF-${\kappa}B$ in the human Nanog promoter and postulated that NF-${\kappa}B$ protein may regulate expression of the Nanog gene. We used human embryonic carcinoma (EC) cells as a model system of ES cells and confirmed decrease of Nanog and increase of NF-${\kappa}B$ upon differentiation induced by retinoic acid. Although deletion analysis on the DNA fragment including NF-${\kappa}B$ binding site suggested involvement of NF-${\kappa}B$ in the negative regulation of the promoter, site-directed mutation of NF-${\kappa}B$ binding site had no effect on the Nanog promoter activity. Furthermore, no direct association of NF-${\kappa}B$ with the Nanog promoter was detected during differentiation. Therefore, we conclude that NF-${\kappa}B$ protein may not be involved in transcriptional regulation of Nanog gene expression in EC cells and possibly in ES cells.

PI3-Kinase and PDK-1 Regulate HDAC1-mediated Transcriptional Repression of Transcription Factor NF-κB

  • Choi, Yong Seok;Jeong, Sunjoo
    • Molecules and Cells
    • /
    • 제20권2호
    • /
    • pp.241-246
    • /
    • 2005
  • PDK-1 activates PI3-kinase/Akt signaling and regulates fundamental cellular functions, such as growth and survival. NF-${\kappa}B$ is involved in the induction of a variety of cellular genes affecting immunity, inflammation and the resistance to apoptosis induced by some anti-cancer drugs. Even though the crucial involvement of the PI3-kinase/Akt pathway in the anti-apoptotic activation of NF-${\kappa}B$ is well known, the exact role of PDK-1 as well as PI3-kinase/Akt in NF-vactivation is not understood. Here we demonstrate that PDK-1 plays a pivotal role in transcriptional activation of NF-${\kappa}B$ by dissociating the transcriptional co-repressor HDAC1 from the p65 subunit of NF-${\kappa}B$. The association of CBP with p65 was not directly modulated by PDK-1 or by PI3-kinase. Etoposide activated NF-${\kappa}B$ through PI3-kinase/Akt, and the transcription activation domain (TAD) of p65 was further activated by wild-type PDK-1. Overexpression of a dominant negative PDK-1 mutant decreased etoposide-induced NF-${\kappa}B$ transcription and further down-regulated the ectopic HDAC1-mediated decrease in NF-${\kappa}B$ transcriptional activity. Thus activation of PDK-1 relieves the HDAC1-mediated repression of NF-${\kappa}B$ that may be related to basal as well as activated transcription by NF-${\kappa}B$. This effect may also explain the role of the PI3-kinase/PDK-1 pathway in the anti-apoptotic function of NF-${\kappa}B$ associated with the chemoresistance of cancer cells.