References
-
Yuan, Q., Zhang, X., Liu, Z., Song, S., Xue, P., Wang, J. and Ruan, J. (2013) Ethanol extract of Adiantum capillus-veneris L. suppresses the production of inflammatory mediators by inhibiting NF-
$\kappa{B}$ activation. J. Ethnopharmacol. 147, 603-611. https://doi.org/10.1016/j.jep.2013.03.046 - De Heredia, F. P., Gomez-Martinez, S. and Marcos, A. (2012) Obesity, inflammation and the immune system. Proc. Nutr. Soc. 71, 332-338. https://doi.org/10.1017/S0029665112000092
- Guha, M. and Mackman, N. (2001) LPS induction of gene expression in human monocytes. Cell Signal. 13, 85-94. https://doi.org/10.1016/S0898-6568(00)00149-2
- Yamamoto, Y. and Gaynor, R. B. (2001) Role of the NF-kappaB pathway in the pathogenesis of human disease states. Curr. Mol. Med. 1, 287-296. https://doi.org/10.2174/1566524013363816
- Bharti, A. C. and Aggarwal, B. B. (2002) Nuclear factor-kappa B and cancer: its role in prevention and therapy. Biochem. Pharmacol. 64, 883-888. https://doi.org/10.1016/S0006-2952(02)01154-1
- Garg, A. and Aggarwal, B. B. (2002) Nuclear transcription factor-kappaB as a target for cancer drug development. Leukemia 16, 1053-1068. https://doi.org/10.1038/sj.leu.2402482
- Gilroy, D. W., Lawrence, T., Perretti, M. and Rossi, A. G. (2004) Inflammatory resolution: new opportunities for drug discovery. Nat. Rev. Drug Discov. 3, 401-416. https://doi.org/10.1038/nrd1383
- Moi, P., Chan, K., Asunis, I., Cao, A. and Kan, Y. W. (1994) Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the b-globin locus control region. Proc. Natl. Acad. Sci. U.S.A. 91, 9926-9930. https://doi.org/10.1073/pnas.91.21.9926
- Motohashi, H. and Yamamoto, M. (2004) Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol. Med. 10, 549-557. https://doi.org/10.1016/j.molmed.2004.09.003
- Jeong, W. S., Jun, M. and Kong, A. N. (2006) Nrf2: A Potential Molecular Target for Cancer Chemoprevention by Natural Compounds. Antioxid. Redox Signal. 8, 99-106. https://doi.org/10.1089/ars.2006.8.99
- Kwak, M. K. and Kensler, T. W. (2010) Targeting NRF2 signaling for cancer chemoprevention. Toxicol. Appl. Pharmacol. 244, 66-76. https://doi.org/10.1016/j.taap.2009.08.028
-
Li, W., Khor, T. O., Xu, C., Shen, G., Jeong, W. S., Yu, S. and Kong, A. N. (2008) Activation of Nrf2-antioxidant signaling attenuates NF
$\kappa{B}$ -inflammatory response and elicits apoptosis. Biochem. Pharmacol. 76, 1485-1489. https://doi.org/10.1016/j.bcp.2008.07.017 - Liu, G. H., Qu, J. and Shen, X. (2008) NF-kB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochim. Biophys. Acta. 1783, 713-727. https://doi.org/10.1016/j.bbamcr.2008.01.002
- Yu, M., Li, H., Liu, Q., Liu, F., Tang, L., Li, C., Yuan, Y., Zhan, Y., Xu, W., Li, W., Chen, H., Ge, C., Wang, J. and Yang, X. (2011) Nuclear factor p65 interacts with Keap1 to repress the Nrf2-ARE pathway. Cell Signal. 23, 883-892. https://doi.org/10.1016/j.cellsig.2011.01.014
- Hwang, Y. J., Lee, E. W., Song, J., Kim, H. R., Jun, Y. C. and Hwang, K. A. (2013) MafK positively regulates NF-kB activity by enhancing CBP-mediated p65 acetylation. Sci. Rep. 3, 3242. https://doi.org/10.1038/srep03242
-
Kwon, D. J., Bae, Y. S., Ju, S. M., Youn, G.S., Choi, S. Y. and Park, J. (2014) Salicortin suppresses lipopolysaccharide-stimulated inflammatory responses via blockade of NF-
$\kappa{B}$ and JNK activation in RAW 264.7 macrophages. BMB Rep. 47, 318-323. https://doi.org/10.5483/BMBRep.2014.47.6.200 -
Jeong, J. B., Hong, S. C., Jeong, H. J. and Koo, J. S. (2011) Anti-inflammatory Effect of 2-Methoxy-4-Vinylphenol via the Suppression of NF-
$\kappa{B}$ and MAPK Activation, and Acetylation of Histone H3. Arch. Pharm. Res. 34, 2109-2116. https://doi.org/10.1007/s12272-011-1214-9 - Jeong, J. H., Ryu, D. S., Suk, D. H. and Lee, D. S. (2011) Anti-inflammatory effects of ethanol extract from Orostachys japonicus on modulation of signal pathways in LPS-stimulated RAW 264.7 cells. BMB Rep. 44, 399-404. https://doi.org/10.5483/BMBRep.2011.44.6.399
- Hwang, Y. J., Lee, E. J., Kim, H. R. and Hwang, K. A. (2013) In vitro antioxidant and anticancer effects of solvent fractions from prunella vulgaris var. lilacina. BMC Complement. Altern. Med. 13, 310. https://doi.org/10.1186/1472-6882-13-310
-
Hwang, Y. J., Lee, E. J., Kim, H. R. and Hwang, K. A. (2013) NF-
$\kappa{B}$ -Targeted Anti-Inflammatory Activity of Prunella vulgaris var. lilacina in Macrophages RAW 264.7. Int. J. Mol. Sci. 14, 21489-21503. https://doi.org/10.3390/ijms141121489 - Lamaison, J. L., Petitjean-Freytet, C. and Carnat, A. (1991) Medicinal Lamiaceae with antioxidant properties, a potential source of rosmarinic acid. Pharm. Acta. Helv. 66, 185-188.
- Lockyer, J. M., Colladay, J. S., Alperin-Lea, W. L., Hammond, T. and Buda, A. J. (1998) Inhibition of nuclear factor-kappaB-mediated adhesion molecule expression in human endothelial cells. Circ. Res. 82, 314-320. https://doi.org/10.1161/01.RES.82.3.314
- Marui, N., Offermann, M. K., Swerlick, R., Kunsch, C., Rosen, C. A., Ahmad, M., Alexander, R. W. and Medford, R. M. (1993) Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells. J. Clin. Invest. 92, 1866-1874. https://doi.org/10.1172/JCI116778
- Chen, X. L. and Kunsch, C. (2004) Induction of Cytoprotective Genes through Nrf2/Antioxidant Response Element Pathway: A New Therapeutic Approach for the Treatment of Inflammatory Diseases. Curr. Pharm. Des. 10, 879-891. https://doi.org/10.2174/1381612043452901
- Thimmulappa, R. K., Lee, H., Rangasamy, T., Reddy, S. P., Yamamoto, M., Kensler, T. W. and Biswal, S. (2006) Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J. Clin. Invest. 116, 984-995. https://doi.org/10.1172/JCI25790
-
Tak, P. P. and Firestein, G. S. (2001) NF-
$\kappa{B}$ : a key role in inflammatory diseases. J. Clin. Invest. 107, 7-11. https://doi.org/10.1172/JCI11830 -
Pikarsky, E., Porat, R. M., Stein, I., Abramovitch, R., Amit, S., Kasem, S., Gutkovich-Pyest, E., Urieli-Shoval, S., Galun, E. and Ben-Neriah, Y. (2004) NF-
$\kappa{B}$ functions as a tumour promoter in inflammation-associated cancer. Nature 431, 461-466. https://doi.org/10.1038/nature02924 - Balogun, E., Hoque, M., Gong, P., Killeen, E., Green, C. J., Foresti, R., Alam, J. and Motterlini, R. (2003) Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem. J. 371, 887-895. https://doi.org/10.1042/BJ20021619
- Heiss, E., Herhaus, C., Klimo, K., Bartsch, H. and Gerhauser, C. (2001) Nuclear factor kappa B is a molecular target for sulforaphanemediated anti-inflammatory mechanisms. J. Biol. Chem. 276, 32008-32115. https://doi.org/10.1074/jbc.M104794200
- Thimmulappa, R. K., Mai, K. H., Srisuma, S., Kensler, T. W., Yamamoto, M. and Biswal, S. (2002) Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res. 62, 5196-5203.
- Gao, X. and Talalay, P. (2004) Induction of phase 2 genes by sulforaphane protects retinal pigment epithelial cells against photooxidative damage. Proc. Natl. Acad. Sci. U.S.A. 101, 10446-10451. https://doi.org/10.1073/pnas.0403886101
- Kundu, J. K., Na, H. K., Chun, K. S., Kim, Y. K., Lee, S. J., Lee, S. S., Lee, O. S., Sim, Y. C. and Surh, Y. J. (2003) Inhibition of Phorbol Ester-Induced COX-2 Expression by Epigallocatechin Gallate in Mouse Skin and Cultured Human Mammary Epithelial Cells. J. Nutr. 133, 3805S-3810S.
- Na, H. K. and Surh, Y. J. (2008) Modulation of Nrf2- mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG. Food Chem. Toxicol. 46, 1271-1278. https://doi.org/10.1016/j.fct.2007.10.006
Cited by
- Bardoxolone Methyl Prevents High-Fat Diet-Induced Colon Inflammation in Mice vol.64, pp.4, 2016, https://doi.org/10.1369/0022155416631803
- Dietary Phytochemicals and Cancer Chemoprevention: A Perspective on Oxidative Stress, Inflammation, and Epigenetics vol.29, pp.12, 2016, https://doi.org/10.1021/acs.chemrestox.6b00413
- Anti-inflammatory effects of Hwang-Heuk-San, a traditional Korean herbal formulation, on lipopolysaccharide-stimulated murine macrophages vol.15, pp.1, 2015, https://doi.org/10.1186/s12906-015-0971-2
- Host-guest inclusion system of oleanolic acid with methyl-β-cyclodextrin: Preparation, characterization and anticancer activity vol.1117, 2016, https://doi.org/10.1016/j.molstruc.2016.03.071
- 1-(2,3-Dibenzimidazol-2-ylpropyl)-2-methoxybenzene Is a Syk Inhibitor with Anti-Inflammatory Properties vol.21, pp.4, 2016, https://doi.org/10.3390/molecules21040508
- The Role of Protein Arginine Methyltransferases in Inflammatory Responses vol.2016, 2016, https://doi.org/10.1155/2016/4028353
- Cancer prevention and therapy through the modulation of transcription factors by bioactive natural compounds vol.40-41, 2016, https://doi.org/10.1016/j.semcancer.2016.03.005
- Anti-arthritic property of crude extracts of Piptadeniastrum africanum (Mimosaceae) in complete Freund’s adjuvant-induced arthritis in rats vol.17, pp.1, 2017, https://doi.org/10.1186/s12906-017-1623-5
- MAPK/AP-1-Targeted Anti-Inflammatory Activities of Xanthium strumarium vol.44, pp.06, 2016, https://doi.org/10.1142/S0192415X16500622
- Solid inclusion complexes of oleanolic acid with amino-appended β-cyclodextrins (ACDs): Preparation, characterization, water solubility and anticancer activity vol.69, 2016, https://doi.org/10.1016/j.msec.2016.05.022
- Anti-inflammatory effect of Naravelia zeylanica DC via suppression of inflammatory mediators in carrageenan-induced abdominal oedema in zebrafish model vol.25, pp.1, 2017, https://doi.org/10.1007/s10787-016-0303-2
- Oleanolic Acid Attenuates Insulin Resistance via NF-κB to Regulate the IRS1-GLUT4 Pathway in HepG2 Cells vol.2015, 2015, https://doi.org/10.1155/2015/643102
- Src/Syk/IRAK1-targeted anti-inflammatory action of Torreya nucifera butanol fraction in lipopolysaccharide-activated RAW264.7 cells vol.188, 2016, https://doi.org/10.1016/j.jep.2016.05.008
- Oleanolic acid ameliorates dextran sodium sulfate-induced colitis in mice by restoring the balance of Th17/Treg cells and inhibiting NF-κB signaling pathway vol.29, pp.2, 2015, https://doi.org/10.1016/j.intimp.2015.10.024
- Sodium Hypochlorite Inactivates Lipoteichoic Acid of Enterococcus faecalis by Deacylation vol.42, pp.10, 2016, https://doi.org/10.1016/j.joen.2016.06.018