• 제목/요약/키워드: NF-kB

검색결과 1,700건 처리시간 0.035초

Role of PI3-Kinase/Akt Pathway in the Activation of Etoposide-Induced $NF-{\kappa}B$ Transcription Factor

  • Choi Yong-Seok;Park Heon-Yong;Jeong Sun-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권3호
    • /
    • pp.391-398
    • /
    • 2006
  • $NF-{\kappa}B$ is a transcription factor involved in the innate immunity against bacterial infection and inflammation. It is also known to render cells resistant to the apoptosis caused by some anticancer drugs. Such a chemoresistance of cancer cells may be related to the activation of $NF-{\kappa}B$ transcription factor; however, the mechanism of activation is not well understood. Here, we demonstrate that a chemotherapeutic agent, etoposide, independently stimulates the $I{\kappa}B{\alpha}$ degradation pathway and PI3-kinase/Akt signaling pathway: The classical $I{\kappa}B{\alpha}$ degradation pathway leads to the nuclear translocation and DNA binding of p65 subunit through $IKK{\beta}$ kinase, whereas the PI3-kinase/Akt pathway plays a distinct role in activating this transcription factor. The PI3-kinase/Akt pathway acts on the p50 subunit of the $NF-{\kappa}B$ transcription factor and enhances the DNA binding affinity of the p50 protein. It may also explain the role of the PI3-kinase/Akt pathway in the anti-apoptotic function of $NF-{\kappa}B$ during chemoresistance of cancer cells.

Inhibition of $NF-{\kappa}B$ Activation Increases Oxygen-Glucose Deprivation-Induced Cerebral Endothelial Cell Death

  • Lee, Jin-U;Kim, Chul-Hoon;Shim, Kyu-Dae;Ahn, Young-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권2호
    • /
    • pp.65-71
    • /
    • 2003
  • Increasing evidences suggest that ischemia-induced vascular damage is an integral step in the cascade of the cellular and molecular events initiated by cerebral ischemia. In the present study, employing a mouse brain endothelioma-derived cell line, bEnd.3, and oxygen-glucose deprivation (OGD) as an in vitro stroke model, the role of nuclear factor kappa B (NF-${\kappa}B$) activation during ischemic injury was investigated. OGD was found to activate NF-${\kappa}B$ and to induce bEnd.3 cell death in a time-dependent manner. OGD phosphorylated neither 32 Ser nor 42 Tyr of $I{\kappa}B{\alpha}$. OGD did not change the amount of $I{\kappa}B{\alpha}$. The extents of OGD-induced cell death after 8 h, 10 h, 12 h and 14 h of OGD were 10%, 35%, 60% and 85%, respectively. Reperfusion following OGD did not cause additional cell death, indicating no reperfusion injury after ischemic insult in cerebral endothelial cells. Three known as NF-${\kappa}B$ inhibitors, including pyrrolidine dithiocarbamate (PDTC) plus zinc, aspirin and caffeic acid phenethyl ester (CAPE), inhibited OGD-induced NF-${\kappa}B$ activation and increased OGD-induced bEnd.3 cell death in a dose dependent manner. There were no changes in the protein levels of bcl-2, bax and p53 which are modulated by NF-${\kappa}B$ activity. These results suggest that NF-${\kappa}B$ activation might be a protective mechanism for OGD-induced cell death in bEnd.3.

Oleanolic acid regulates NF-κB signaling by suppressing MafK expression in RAW 264.7 cells

  • Hwang, Yu-Jin;Song, Jaewhan;Kim, Haeng-Ran;Hwang, Kyung-A
    • BMB Reports
    • /
    • 제47권9호
    • /
    • pp.524-529
    • /
    • 2014
  • Oxidative stress and inflammation are common to many pathological conditions. Defense mechanisms protect cells from oxidative stress, but can become over-activated following injury and inflammation. NF-${\kappa}B$ and Nrf2 transcription factors regulate proinflammatory and antioxidant gene expression, respectively. Studies have shown that many natural dietary compounds regulate NF-${\kappa}B$ and Nrf2, preventing inflammation and oxidative stress. Here, we report major compounds of Prunella vulgaris var. lilacina such as rosmarinic acid, oleanolic acid, ursolic acid and caffeic acid as a potential therapeutic for oxidative stress and inflammation. The major compounds exhibited high anti-inflammatory activity, inhibiting NO, PGE2 production, NF-${\kappa}B$ expression and activating Nrf2 expression. In addition, we examined the effect of major compounds on MafK expression. Among the compounds, oleanolic acid significantly decreased MafK expression and MafK-mediated p65 acetylation. These findings suggest that oleanolic acid as NF-${\kappa}B$ inhibitors can potentially be used in therapeutic applications for the treatment of oxidative stress-induced diseases.

HSV-1 ICP27 represses NF-κB activity by regulating Daxx sumoylation

  • Kim, Ji Ae;Choi, Mi Sun;Min, Jung Sun;Kang, Inho;Oh, Jeongho;Kim, Jin Chul;Ahn, Jeong Keun
    • BMB Reports
    • /
    • 제50권5호
    • /
    • pp.275-280
    • /
    • 2017
  • Herpes simplex virus type 1 ICP27 is a multifunctional protein responsible for viral replication, late gene expression, and reactivation from latency. ICP27 interacts with various cellular proteins, including Daxx. However, the role of interaction between ICP27 and Daxx is largely unknown. Since Daxx is known to repress $NF-{\kappa}B$ activity, there is a possibility that ICP27 may influence the inhibitory effect of Daxx on $NF-{\kappa}B$ activity. In this study, we tested whether ICP27 affects the $NF-{\kappa}B$ activity through its interaction with Daxx. Interestingly, ICP27 enhanced the Daxx-mediated repression of $NF-{\kappa}B$ activity. In addition, we found that sumoylation of Daxx regulates its interaction with p65. ICP27 binds to Daxx, inhibits Daxx sumoylation, and enhances p65 deacetylation induced by Daxx. Consequently, ICP27 represses the $NF-{\kappa}B$ activity, by elevating the inhibitory effect of Daxx on $NF-{\kappa}B$ activity through desumoylation of Daxx.

급성 저산소증 상태에서 심장 내 전사인자 NF-κB의 기능 (Role of the Nuclear Transcription Factor NF-κB Caused by Acute Hypoxia in the Heart)

  • 주찬웅;정우석;김재철;이호근
    • Clinical and Experimental Pediatrics
    • /
    • 제45권9호
    • /
    • pp.1106-1113
    • /
    • 2002
  • 목 적: 전사인자 $NF-{\kappa}B$는 스트레스 등으로부터 세포 자멸사를 조절하여 적응을 유지하는 기본적인 분자로 인식되고 있다. 저산소증 상태는 많은 심장병에서 동반되는 병변으로 성장인자 VEGF와 IGF-I는 저산소증 시에 심장을 보호하는 작용을 할 것으로 추측되고 있다. 본 연구에서는 저산소증과 같은 자극으로부터 심장의 보호 기능이 추정된 $NF-{\kappa}B$의 발현과 함께 VEGF와 IGF-I의 발현 연관성을 검토하여 분자 생물학적인 기전을 이해하고자 하였다. 방 법 : 실험동물로 Sprague Dawley rat을 이용하여, 저산소 자극은 8%의 산소와 92% 질소를 hypoxic chamber로 관류시키며 유도하였다. 심장에 대한 저산소증 자극 후 심근세포로부터 측정 인자들과 관련된 핵 내 단백질, 전단백질 그리고 mRNA를 분리하였다. 핵 내의 전사인자는 EMSA로 측정하였으며, VEGF와 IGF-I의 발현은 competitive-PCR, Western hybridization, Northern hybridization으로 확인하였다. 또한 이러한 성장인자의 발현과 관련된 $NF-{\kappa}B$의 기능을 확인하기 위하여 $NF-{\kappa}B$의 핵 내 이동 억제제인 DDTC를 전 처치로 복강 내 주사하여 그에 따른 VEGF 및 IGF-I의 발현 양상을 비교하였다. 결 과 : 저산소 자극 후에 심근 세포 내에 전사인자 $NF-{\kappa}B$, AP-1, NF-ATc의 활성이 증가되었다. VEGF와 IGF-I의 발현도 저산소증 자극 시 증가되었지만, DDTC 전 처치에 의한 $NF-{\kappa}B$의 핵 내 이동 차단 후 이들 인자의 발현은 의의 있게 감소하였다. 결 론 : 전사인자 $NF-{\kappa}B$는 저산소증 상태에서 그 활성이 증가하고 저산소증 상태와 같은 심장에 대한 이상 자극 시 VEGF와 IGF-I의 발현을 증가시켜 심장을 보호하는 것으로 추정된다.

Ginsenoside compound K inhibits nuclear factor-kappa B by targeting Annexin A2

  • Wang, Yu-Shi;Zhu, Hongyan;Li, He;Li, Yang;Zhao, Bing;Jin, Ying-Hua
    • Journal of Ginseng Research
    • /
    • 제43권3호
    • /
    • pp.452-459
    • /
    • 2019
  • Background: Ginsenoside compound K(C-K), a major metabolite of ginsenoside, exhibits anticancer activity in various cancer cells and animal models. A cell signaling study has shown that C-K inhibited nuclear factor-kappa B ($NF-{\kappa}B$) pathway in human astroglial cells and liver cancer cells. However, the molecular targets of C-K and the initiating events were not elucidated. Methods: Interaction between C-K and Annexin A2 was determined by molecular docking and thermal shift assay. HepG2 cells were treated with C-K, followed by a luciferase reporter assay for $NF-{\kappa}B$, immunofluorescence imaging for the subcellular localization of Annexin A2 and $NF-{\kappa}B$ p50 subunit, coimmunoprecipitation of Annexin A2 and $NF-{\kappa}B$ p50 subunit, and both cell viability assay and plate clone formation assay to determine the cell viability. Results: Both molecular docking and thermal shift assay positively confirmed the interaction between Annexin A2 and C-K. This interaction prevented the interaction between Annexin A2 and $NF-{\kappa}B$ p50 subunit and their nuclear colocalization, which attenuated the activation of $NF-{\kappa}B$ and the expression of its downstream genes, followed by the activation of caspase 9 and 3. In addition, the overexpression of Annexin A2-K320A, a C-K binding-deficient mutant of Annexin A2, rendered cells to resist C-K treatment, indicating that C-K exerts its cytotoxic activity mainly by targeting Annexin A2. Conclusion: This study for the first time revealed a cellular target of C-K and the molecular mechanism for its anticancer activity.

폐암세포주의 TNF-$\alpha$ 유발 apoptosis에서 NF-${\kappa}B$의 역할 (The Role of NF-${\kappa}B$ in the TNF-$\alpha$-induced Apoptosis of Lung Cancer Cell Line)

  • 김재열;이승희;황보빈;이춘택;김영환;한성구;심영수;유철규
    • Tuberculosis and Respiratory Diseases
    • /
    • 제48권2호
    • /
    • pp.166-179
    • /
    • 2000
  • 연구배경: 현재 사용되고 있는 많은 항암제는 암세포의 apoptosis를 유도함으로서 암세포를 사멸시키는 것이 주된 작용 기전이다. 항암제에 의한 치료 실패의 주된 원인은 암세포의 apoptosis에 대한 내성 획득에 의한 것으로 이해되고 있다. 최근의 보고에 의하면 많은 암세포주에서 apoptosis에 대한 내성 획득에 NF-${\kappa}B$의 활성화가 중요한 역할을 한다고 알려져 있지만 일부 세포에서는 상반된 결과를 보이고 있어 apoptosis에 대한 내성 획득과 NF-${\kappa}B$의 활성화와의 관련성은 세포에 따라 차이를 보이고 있다. 본 연구에서는 비소세포폐암 세포주가 TNF-$\alpha$ 유발 apoptosis에 저항을 나타내는 기전에서 NF-${\kappa}B$의 역할을 규명하고자 하였다. 방 법: 비소세포폐암세포주인 NCI-H157 세포에 TNF-$\alpha$ cycloheximide(CHX), TNF-$\alpha$와 CHX를 각각 투여하고 24시간 후 MTT assay로 세포생존율을 평가하였고 apoptosis의 발생 유무는 PARP에 대한 Westrn 분석으로 평가하였다. Ad5LacZ와 $Ad5I{\kappa}B{\alpha}SR$를 20시간 동안 감염시킨 각각의 세포를 1, 5, 10, 20, 50 ng/ml의 TNF-$\alpha$로 24, 48시간 자극 후 MTT assay를 시행하였고, 같은 농도의 TNF-$\alpha$로 24, 48시간 자극 후 PARP에 대한 Western 분석을 시행하였다. $I{\kappa}B{\alpha}$의 분해를 억제하는 proteasome inhibitor 인 MG132를 전처치하고 TNF-$\alpha$로 24, 48 시간 자극 후 MTT assay와 PARP에 대한 Westrn 분석을 시행하였다. $Ad5I{\kappa}B{\alpha}SR$를 감염시킨 세포를 TNF-$\alpha$로 자극한 후 NF-${\kappa}B$의 활성화를 EMSA로 평가하였다. 결 과: 1. TNF-$\alpha$ 단독 투여로는 세포 생존율의 감소와 apoptosis가 관찰되지 않았고 TNF-$\alpha$와 CHX를 같이 투여하였을 때는 세포 생존율의 감소와 함께 apoptosis가 유도되었다. 2. $Ad5I{\kappa}B{\alpha}SR$의 감염으로 $I{\kappa}B{\alpha}$가 과발현된 세포와 MG132를 전처치한 세포에서 TNF-$\alpha$ 자극에 의한 NF-${\kappa}B$의 활성화가 억제되었다. 3. $Ad5I{\kappa}B{\alpha}$ SR를 감염시킨 세포와 MG132를 전처치하여 NF-${\kappa}B$의 활성을 억제한 세포에서 TNF-$\alpha$ 자극 후 세포 생존율이 감소하고 apoptosis가 유도되었다. 결 론: 비소세포폐암 세포주의 TNF-$\alpha$ 유발 apoptosis에 대한 내성은 NF-${\kappa}B$의 활성화에 의해 생성되는 새로운 단백의 발현에 의한 것으로 생각되며, NF-${\kappa}B$ 활성화의 억제로 이를 극복할 수 있을 것으로 사료된다.

  • PDF

종양의 성장 및 전이에 있어서 NF-κB의 역할 (Role of Nuclear Factor (NF)-κB Activation in Tumor Growth and Metastasis)

  • 고현미;최정화;나명석;임선영
    • IMMUNE NETWORK
    • /
    • 제3권1호
    • /
    • pp.38-46
    • /
    • 2003
  • Background: Platelet-activating factor (PAF) induces nuclear factor $(NF)-{\kappa}B$ activation and angiogenesis and increases tumor growth and pulmonary tumor metastasis in vivo. The role of $NF-{\kappa}B$ activation in PAF-induced angiogenesis in a mouse model of Matrigel implantation, and in PAF-mediated pulmonary tumor metastasis were investigated. Methods: Angiogenesis using Matrigel and experimental pulmonary tumor metastasis were tested in a mouse model. Electrophoretic mobility shift assay was done for the assessment of $NF-{\kappa}B$ translocation to the nucleus. Expression of angiogenic factors, such as tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\alpha}$, basic fibroblast growth factor (bFGF), and vascular endothelial growth factor (VEGF) were tested by RT-PCR and ELISA. Results: PAF induced a dose- and time-dependent angiogenic response. PAF-induced angiogenesis was significantly blocked by PAF antagonist, CV6209, and inhibitors of $NF-{\kappa}B$ expression or action, including antisense oligonucleotides to p65 subunit of $NF-{\kappa}B$ (p65 AS) and antioxidants such as ${\alpha}$-tocopherol and N-acetyl-L-cysteine. In vitro, PAF activated the transcription factor, $NF-{\kappa}B$ and induced mRNA expression of $TNF-{\alpha}$, $IL-1{\alpha}$, bFGF, VEGF, and its receptor, KDR. The PAF-induced expression of the above mentioned factors was inhibited by p65 AS or antioxidants. Also, protein synthesis of VEGF was increased by PAF and inhibited by p65 AS or antioxidants. The angiogenic effect of PAF was blocked when anti-VEGF antibodies was treated or antibodies against $TNF-{\alpha}$, $IL-1{\alpha}$, and bFGF was co-administrated, but not by antibodies against $TNF-{\alpha}$, $IL-1{\alpha}$, and bFGF each alone. PAF-augmented pulmonary tumor metastasis was inhibited by p65 AS or antioxidants. Conclusion: These data indicate that PAF increases angiogenesis and pulmonary tumor metastasis through $NF-{\kappa}B$ activation and expression of $NF-{\kappa}B$-dependent angiogenic factors.

SUPPRESSION OF PHORBOL ESTER-INDUCED EXPRESSION OF CYCLLOOXYGENASE-2 AND INDUCIBLE NITRIC OXIDE SYNTHASE BY SELCTED CHEMOPREVENTIVE PHYTOCHEMICALS VIA DOWN-REGULATION OF NF-$\textsc{k}$B

  • Surh, Young-Joon
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2002년도 국제심포지움
    • /
    • pp.88.2-98
    • /
    • 2002
  • A wide arry of naturally occurring substances particularly those present in dietary and medicinal plants, have been reported to possess substantial cancer chemopreventive properties. Certain phytochemicals retain strong antioxidative and anti-inflammatory properties which appear to contribute to their chemopreventive or chemoprotective activities. Inducible cyclooxygenase(COX-2) and nitric oxide synthase (iNOS) are important enzymes that mediate inflammatory processes. There is some evidence that expression of both COX-2 and iNOS is co-regulated by the eukaryotic transcription factor NF-$textsc{k}$B. Increased expression of COX-2 and/or iNOS has been associated with pathophysiology of certain types of human cancers as well as inflammatory diseases. Since inflammation is closely linked to tumor promotion, substances with potent anti-inflammatory activies are anticipated to exert chemopreventive effects on carcinogenesis, particularly in the promotion stage. An example is curcumin, a yellow pigment of turmeric (Curcuma longa L., Zingiberaceae), that strongly occurring diaryl heptanoids structurally related to curcumin have substantial anti-tumor promotional activities in two-stage mouse skin carcinogenesis. Thus, yakuchinone A [1-(4'-hydroxy-3'-methoxyphenyl)-7-phenyl-3heptanone] and yakuchinone B [1-(4'-hydroxy-3'methoxyphenyl)-7-phenylhept-1-en-3-one] present in Alpinia oxyphylla Miquel (Zingiberacease) attenuate phorbol ester-induced inflammation and papilloma formation in female ICR mice. These diarylheptanoids also suppressed phorbol ester-induced activation of epdermal ornithine decarboxylase and its mRNA expression when applied onto shaven backs of mice. Yakuchinone A and B as well as curcumin inhibited phorbol ester-induced expression of COX-2 and iNOS and their mRNA in mouse skin via inactivation of NF-$textsc{k}$B. Capsaicin, a major pungent ingredient of red pepper also attenuated phorbol ester-induced NF-$textsc{k}$B activation. Similar suppression of COX-2 and iNOS and down-regulation of NF-$textsc{k}$B activation for its DNA binding were observed with the ginsenosied Rg3 and the ethanol extract of Artemisia asiatica. We have also found that certain anti-inflammatory phytochemicals exert inhibitory effects on phorbol ester-induced COX-2 expression and NF-$textsc{k}$B activation in immortalized human breast epithelial (MCF-10A) cells in culture. One of the plausible mechanisms undelying inhibition by aforementioned phytochemicals of phorbol ester-induced NF-$textsc{k}$B activation involves interference with degragation of the inhibitory unit, I$textsc{k}$Ba, which blocks subsequent nuclear translocation of the functionally active p65 subunit of NF-$textsc{k}$B. the activation of epidermal NF-$textsc{k}$B by phorbol ester and subsequent induction of COX-2 hence appear to play an important role in intracellular signaling pathwasy leading to tumor promotion and targeted inhibition of NF-$textsc{k}$B may provide a new promising cancer chemopreventive strategy.

  • PDF

악액질 완화를 위한 안전한 Nuclear Factor-kappa B 전사인자 제어 물질 발굴 (Safe Nuclear Factor-kappa B Inhibitor for Cachexia Management)

  • 박정수
    • Journal of Korean Biological Nursing Science
    • /
    • 제14권2호
    • /
    • pp.129-138
    • /
    • 2012
  • Purpose: Cachexia is a complex metabolic syndrome associated with wasting of skeletal muscle which contributes to nearly one-third of all cancer deaths. Cachexia lowers the frequency of response to chemotherapy and radiation and ultimately can impact survival as well as quality of life during treatment. NF-kappa B is one of the most important molecular mediators of cachexia. In this study, therefore, possible candidates for inhibitors of NF-kappa B were searched. Methods: Amino acids that regulate cellular redox potential by adjusting the level of NAD/NADH ratio, such as aspartate, pyruvate, and isocitrate were selected. Results: Pyruvate effectively inhibited luciferase activity in TNF-stimulated 293T cells transfect with an NF-kB dependent luciferase reporter vector. Pyruvate also showed protective effect on muscle atrophy of differentiated C2C12 myocyte induced by TNF/IFN. Conclusion: We might be able to develop the nutritional management strategy for cancer cachexia patients with pyruvate supplementation.