• Title/Summary/Keyword: NF-${\kappa}B$ inhibitory activity

Search Result 168, Processing Time 0.031 seconds

Synthesis of 7-Aryloxy-chroman-2-carboxamides and their Evaluation of NF-${\kappa}B$ Inhibitory Activities (7-아릴옥시-크로만-2-카복사마이드 유도체들의 합성 및 NF-${\kappa}B$ 저해활성)

  • Choi, Eun-Hwa;Kwak, Jae-Hwan;Kim, Young-Soo;Lee, Hee-Soon;Jung, Jae-Kyung
    • YAKHAK HOEJI
    • /
    • v.54 no.3
    • /
    • pp.200-204
    • /
    • 2010
  • Nuclear factor-${\kappa}B$ (NF-${\kappa}B$) plays critical roles in physiological and pathological processes such as immune function, cellular growth, homeostasis, apoptosis, and inflammation. As part of our ongoing efforts to develop novel NF-${\kappa}B$ inhibitory agents, we reported that KL-1156 (6-hydroxy-7-methoxychroman-2-carboxylic acid phenylamide) exhibited potent inhibitory activity of NF-${\kappa}B$. For further structure-activity relationship, a series of 7-aryloxy-chroman-2-carboxylamide derivatives were synthesized to explore their inhibitory activities of NF-${\kappa}B$.

Inhibitory Effects of Propenone Derivatives on $NF-{\kappa}B$ activity and IL-8-Induced Monocyte Adhesion to Colon Epithelial Cells (Propenone 유도체의 $NF-{\kappa}B$ 활성 억제 및 IL-8 유도에 의한 단핵구의 장 상피세포 부착 억제 효과)

  • Park, Su-Young;Kim, Kyoung-Jin;Lee, Jong-Suk;Lee, Eung-Seok;Kim, Jung-Ae
    • YAKHAK HOEJI
    • /
    • v.52 no.1
    • /
    • pp.62-66
    • /
    • 2008
  • In this study, we examined the inhibitory effects of propenone derivatives, 1,3-diphenyl-propenone (DPhP), 3-phenyl-1-thiophen-2-yl-propenone (PhT2P), 3-phenyl-1-thiophen-3-yl-propenone (PhT3P) and 1-furan-2-yl-3-phenyl-propenone (FPhP), on $TNF-{\alpha}$-induced nuclear factor (NF)-${\kappa}B$ activity and interleukin (IL)-8-induced monocyte adhesion to colon epithelial cells. 1-Furan-2-yl-3-pyridin-2-yl-propenone (FPP-3) that is previously reported as a $NF-{\kappa}B$ inhibitor suppressed $TNF-{\alpha}$-induced monocyte-epithelial cell adhesion in a concentration-dependent manner. The propenone derivatives, DPhP, PhT2P, PhT3P, FPhP, also inhibited $TNF-{\alpha}$-induced $NF-{\kappa}B$ activation in a similar degree to FPP-3. In a DPPH radical scavenging assay, none of the compounds showed DPPH radical scavenging activity, indicating that the inhibitory actions of the propenone derivatives on redox-sensitive $NF-{\kappa}B$ activity is not due to a simple free radical scavenging activity. In addition, the propenone derivatives also suppressed the IL-8-induced monocyte adhesion to colon epithelial cells. Furthermore, the effective concentrations of the propenone derivatives on both $NF-{\kappa}B$ activation as well as IL-8 induced monocyte-epithelial cell adhesion were 1000 times lower than 5-aminosalicylic acid (5-ASA), a clinically used drug for inflammatory bowel disease. These results suggest that the propenone derivatives may be a potential lead having a strong inhibitory activity against inflammatory cytokine-induced epithelial inflammation.

Synthesis and Inhibitory Activity on NF-${\kappa}B$ Activation of Chroman-2-carboxylic Acid N-Heteroarylamide Derivatives (크로만-2-카르복실산 N-헤테로아릴아마이드 유도체 합성 및 NF-${\kappa}B$ 저해 활성)

  • Yi, Won-Hui;Kwak, Jae-Hwan;Han, Sang-Bae;Kim, Young-Soo;Jung, Jae-Kyung;Lee, Hee-Soon
    • YAKHAK HOEJI
    • /
    • v.56 no.3
    • /
    • pp.186-190
    • /
    • 2012
  • Nuclear factor-${\kappa}B$ (NF-${\kappa}B$) has been considered as one of the major targets for therapeutic agents of diverse human diseases. In the previous studies, 6-hydroxy-7-methoxychroman-2-carboxylic acid N-phenylamide (KL-1156) and chroman-2-carboxylic acid N-(4-chlorophenyl)amide were identified as good inhibitors of NF-${\kappa}B$ activation. In this continuous study, we describe the synthesis and NF-${\kappa}B$ inhibitory activities of chroman derivatives containing N-heteroaryl groups for exploration of SAR (structure-activity relationship). In addition, inhibitory effects of cell proliferation are evaluated against human cancer cell lines (NCI-H23 and PC-3).

Relationship of Inhibitory Effects of Dichroa febrifuga and $IKK{\gamma}$ on the Activation of $NF-{\kappa}B$ (상산의 $NF-{\kappa}B$ 활성억제작용과 $IKK{\gamma}$의 연관성 연구)

  • Choi, Byung-Tae;Lee, Yong-Tae;Hwang, Jang-Sun;Moon, Hae-In;Lee, Kyung-Soo;An, Won-Gun;Kim, Dong-Wan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.3
    • /
    • pp.651-656
    • /
    • 2006
  • Activation of $NF-{\kappa}B$ is known to be a trigger of various cellular disorders including inflammatory and autoimmune diseases such as rheumatoid arthritis. Numerous approaches are ongoing within laboratories to identify potential therapeutic agents which inhibit the $NF-{\kappa}B$ activation. In this study, we have tested the inhibitory effects of five traditional medicines on the activation of $NF-{\kappa}B$ by NIK. Among three medicines which exhibited inhibitory effect on the expression of $NF-{\kappa}B$ repoter plasmid, we investigated further the inhibitory mechanism of Dichroa febrifuga in connection with IKKY activity. Wild type $IKK{\gamma}$ inhibited the $NF-{\kappa}B$ activation by NIK but the C-terminal deletion mutant of IKKY did not show the inhibitory effect, indicating that the C-terminal leucine zipper domain of $NF-{\kappa}B$ is important for the inhibition of $NF-{\kappa}B$ activation. The water extract of Dichroa febrifuga(DFE) also strongly inhibited the $NF-{\kappa}B$ activation by NIK. The inhibitory activity of DFE appeared to be independent of the expression of $IKK{\gamma}$, suggesting that the pathways of inhibition by Dichroa febrifuga and $IKK{\gamma}$ are different. Our results suggest that Dichroa febrifuga can be used as a medicine for inhibition of the $NF-{\kappa}B$ activation in a wide range of cells without relation to the expression of $IKK{\gamma}$.

Structural Features of Polyphenolic Compounds in Their NO Inhibitory Activities

  • Kim, Byung-Hun;Lee, Yong-Gyu;Kim, Tae-Woong;Cho, Jae-Youl
    • Biomolecules & Therapeutics
    • /
    • v.17 no.1
    • /
    • pp.79-85
    • /
    • 2009
  • Polyphenolic compounds are reported to have various pharmacological activities such as anti-oxidative, anti-cancerous, anti-inflammatory and anti-aging effects. Although numerous papers explore their functional roles in many different cellular actions, not many studies handle their structural features in anti-inflammatory responses. In this study, therefore, we examined structural role of substituted transstilbenes in their NO inhibitory and NF-${\kappa}B$ suppressive activities. Of 10 compounds tested, 4 compounds (cinnamic acid, resveratrol, piceatannol and curcumin) displayed NO inhibitory activities in a dose-dependent manner. Similarly, these compounds blocked LPS-induced cytotoxicity of RAW264.7 cells. All NO inhibitory compounds also inhibited $I{\kappa}B{\alpha}$ phosphorylation, a hallmark for NF-${\kappa}B$ activation. However, these inhibitory compounds exhibited distinct suppressive pattern in tumor necrosis factor (TNF)-${\alpha}$- or phorbol-12-myristate-13-acetate (PMA)-induced NF-${\kappa}B$ and AP-1 activation. According to structure-activity relationship study, polarity and size of ring B seem to be important for diminishing NO production. Therefore, our data suggest that substituted trans-stilbenes can be developed as novel anti-inflammatory drug or further developed as lead compounds for another improvement.

HSV-1 ICP27 represses NF-κB activity by regulating Daxx sumoylation

  • Kim, Ji Ae;Choi, Mi Sun;Min, Jung Sun;Kang, Inho;Oh, Jeongho;Kim, Jin Chul;Ahn, Jeong Keun
    • BMB Reports
    • /
    • v.50 no.5
    • /
    • pp.275-280
    • /
    • 2017
  • Herpes simplex virus type 1 ICP27 is a multifunctional protein responsible for viral replication, late gene expression, and reactivation from latency. ICP27 interacts with various cellular proteins, including Daxx. However, the role of interaction between ICP27 and Daxx is largely unknown. Since Daxx is known to repress $NF-{\kappa}B$ activity, there is a possibility that ICP27 may influence the inhibitory effect of Daxx on $NF-{\kappa}B$ activity. In this study, we tested whether ICP27 affects the $NF-{\kappa}B$ activity through its interaction with Daxx. Interestingly, ICP27 enhanced the Daxx-mediated repression of $NF-{\kappa}B$ activity. In addition, we found that sumoylation of Daxx regulates its interaction with p65. ICP27 binds to Daxx, inhibits Daxx sumoylation, and enhances p65 deacetylation induced by Daxx. Consequently, ICP27 represses the $NF-{\kappa}B$ activity, by elevating the inhibitory effect of Daxx on $NF-{\kappa}B$ activity through desumoylation of Daxx.

NF-${\kappa}B$ Inhibitory Activities of Phenolic and Lignan Components from the Stems of Acanthopanax divaricatus var. albeofructus

  • Sun, Ya Nan;Li, Wei;Song, Seok Bean;Yan, Xi Tao;Yang, Seo Young;Kim, Young Ho
    • Natural Product Sciences
    • /
    • v.20 no.4
    • /
    • pp.232-236
    • /
    • 2014
  • Acanthopanax divaricatus var. albeofructus (ADA) is commonly ingested as a traditional medicine or as a component of a health drink in Korea. In this phytochemical study, nine phenolics (1 - 9) and three lignans (10 - 12) were isolated from the MeOH extract of the stems of ADA. Chemical structures were elucidated by comparing spectroscopic data with reported values. Nuclear factor kappa B ($NF-{\kappa}B$) inhibitory activity of the isolated compounds was evaluated using an $NF-{\kappa}B$ luciferase assay in HepG2 cells. Among them, compounds 1, 3 - 8, and 11 showed significant inhibitory effects on $TNF{\alpha}$-induced $NF-{\kappa}B$ transcriptional activity in a dosedependent manner, with $IC_{50}$ values ranging from 13.25 to $37.36{\mu}M$. Further studies on potential anti-inflammatory effects and the benefits of phenolic and lignan components from ADA are warranted.

Structure Activity Relationship of Methylchroman-2-carboxylic Acid N-(Disubstituted)phenylamide Derivatives as Potential NF-${\kappa}B$ Inhibitors (메틸크로만-2-카르복실산 N-(이치환)페닐아마이드 유도체의 NF-${\kappa}B$ 저해 구조-활성 상관 관계)

  • Kim, Tae-Jeong;Kwak, Jae-Hwan;Kim, Young-Soo;Jung, Jae-Kyung;Lee, Hee-Soon
    • YAKHAK HOEJI
    • /
    • v.55 no.2
    • /
    • pp.154-159
    • /
    • 2011
  • During the search for a novel compound that can inhibit NF-${\kappa}B$ activation, 6-hydroxy-7-methoxychroman-2-carboxylic acid phenyl amide (KL-1156) was identified as a good inhibitor of NF-${\kappa}B$ activation. In the present study, we describe the synthesis of methylchroman-2-carboxylic acid N-(disubstituted)phenylamide derivatives (1 and 2 serieses). In addition, their inhibitory effects of NF-${\kappa}B$ are compared with activity of KL-1156 and SAR (structure activity relationship) are explored.

Inhibition of NF-IL6 Activity by Manassantin B, a Dilignan Isolated from Saururus chinensis, in Phorbol Myristate Acetate-stimulated U937 Promonocytic Cells

  • Son, Kyung-No;Song, In-Sung;Shin, Yong-Hyun;Pai, Tong-Kun;Chung, Dae-Kyun;Baek, Nam-In;Lee, Jung Joon;Kim, Jiyoung
    • Molecules and Cells
    • /
    • v.20 no.1
    • /
    • pp.105-111
    • /
    • 2005
  • Mannasantin B, a dilignan structurally related to manssantin A, is an inhibitor of NF-${\kappa}B$ transactivation. In the present study, we found that it inhibited PMA-induced expression of IL-$1{\beta}$, IL-$1{\beta}$ mRNA, and IL-$1{\beta}$ promoter activity in U937 cells with $IC_{50}$ values of about 50 nM. It also inhibited NF-IL6- and NF-${\kappa}B$-induced activation of IL-$1{\beta}$, with $IC_{50}$ values of 78 nM and $1.6{\mu}M$, respectively, revealing a potent inhibitory effect on NF-IL6. Electrophoretic mobility shift assays showed that manassantin B had an inhibitory effect on DNA binding by NF-IL6, but not by NF-${\kappa}B$. Further analysis revealed that transactivation by NF-IL6 was also inhibited. Our results indicate that manassantin B suppresses expression of IL-$1{\beta}$ in promonocytic cells by inhibiting not only NF-${\kappa}B$ but also NF-IL6 activity. Furthermore, our observations suggest that manassantin B may be clinically useful as a potent inhibitor of NF-IL6 activity.

Cobrotoxin Inhibits Prostate Carcinoma PC-3 Cell Growth Through Induction of Apoptotic Cell Death Via Inactivation of NF-kB

  • Song, Kyung-Chul;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.23 no.2
    • /
    • pp.47-59
    • /
    • 2006
  • We previously found that cobrotoxin inhibited $NF-{\kappa}B$ activity by reacting with signal molecules of $NF-{\kappa}B$ which is critical contributor in cancer cell growth by induction of apoptotic cell death. We here investigated whether cobrotoxin inhibits cell growth of human prostate cancer cells through induction of apoptotic cell death, which is related with the suppression of the $NF-{\kappa}B$ activity. Cobrotoxin $(0{\sim}8\;nM)$ inhibited prostate cancer cell growth through increased apoptosis in a dose dependent manner. Cobrotoxin inhibited DNA binding activity of $NF-{\kappa}B$, an anti-apoptotic transcriptional factor. Consistent with the induction of apoptosis and inhibition of $NF-{\kappa}B$, cobrotoxin increased the expression of pro-apoptotic proteins caspase 3. Cobrotoxin, a venom of Vipera lebetina turanica, is a group of basicpeptides composed of 233 amino acids with six disulfide bonds formed by twelve cysteins. NF-kB is activated by subsequent release of inhibitory IkB and translocation of p50. Since sulfhydryl group is present in kinase domain of p50 subunit of NF-kB, cobrotoxin could modify NF-kB activity by protein-protein interaction. And Cobrotoxin down regulated Akt signals. Salicylic acid as a reducing agent of Sulf-hydryl group and LY294002 as a Akt inhibitor abrogated cobrotoxin-induced cell growth and DNA binding activity of $NF-{\kappa}B$. These findings suggest that nano to pico molar range of cobrotoxin could inhibit prostate cancer cell growth, and the effect may be related with the induction of apoptotic cell death through Akt dependent inhibition of $NF-{\kappa}B$ signal.

  • PDF