• Title/Summary/Keyword: NADPH oxidase 4

Search Result 81, Processing Time 0.03 seconds

NADPH Oxidases Are Required for Appressorium-Mediated Penetration in Colletotrichum scovillei-Pepper Fruit Pathosystem

  • Fu, Teng;Lee, Noh-Hyun;Shin, Jong-Hwan;Kim, Kyoung Su
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.345-354
    • /
    • 2022
  • NADPH oxidase (Nox) complexes are known to play essential roles in differentiation and proliferation of many filamentous fungi. However, the functions of Noxs have not been elucidated in Colletotrichum species. Therefore, we set out to characterize the roles of Nox enzymes and their regulators in Colletotrichum scovillei, which causes serious anthracnose disease on pepper fruits in temperate and subtropical and temperate region. In this study, we generated targeted deletion mutants for CsNox1, CsNox2, CsNoxR, and CsNoxD via homologous recombination. All deletion mutants were normal in mycelial growth, conidiation, conidial germination, and appressorium formation, suggesting that CsNox1, CsNox2, CsNoxR, and CsNoxD are not involved in those developmental processes. Notably, conidia of 𝜟Csnox2 and 𝜟Csnoxr, other than 𝜟Csnox1 and 𝜟Csnoxd, failed to cause anthracnose on intact pepper fruits. However, they still caused normal disease on wounded pepper fruits, suggesting that Csnox2 and CsnoxR are essential for penetration-related morphogenesis in C. scovillei. Further observation proved that 𝜟Csnox2 and 𝜟Csnoxr were unable to form penetration peg, while they fully developed appressoria, revealing that defect of anthracnose development by 𝜟Csnox2 and 𝜟Csnoxr resulted from failure in penetration peg formation. Our results suggest that CsNox2 and CsNoxR are critical for appressorium-mediated penetration in C. scovillei-pepper fruit pathosystem, which provides insight into understanding roles of Nox genes in anthracnose disease development.

Anti-obese Effects and Signaling Mechanisms of Chaenomeles sinensis extracts in 3T3-L1 Preadipocytes and Obese Mice Fed a High-fat Diet (3T3L-1 지방전구세포와 고지방식이로 유도된 비만 마우스 모델에서 모과 추출물의 항비만 효과와 억제 기전)

  • Kim, Da-Hye;Kwon, Bora;Kim, Sang Jun;Kim, HongJun;Jeong, Seung-Il;Yu, Kang-Yeol;Kim, Seon-Young
    • Herbal Formula Science
    • /
    • v.25 no.4
    • /
    • pp.457-469
    • /
    • 2017
  • Obesity is one of the most serious health problem because it induced numerous metabolic syndrome and increases the incidence of various disease, including diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. In 3T3-L1 adipocytes, increases in reactive oxygens species (ROS) occur with lipid accumulation. NADPH oxidase, producing superoxide anion, may contribute to the development of obesity-associated insulin resistance and type 2 diabetes. In this study, we elucidated the effect of Chaenomeles sinensis koehne extract (CSE) against the development of obesity and the inhibition mechanisms in 3T3-L1 preadiocytes. CSE decreased triglyceride content and inhibited the expression of adipogenic transcription factors including peroxisome proliferator-activated receptor $(PPAR){\gamma}$, CCAT/enhancer binding protein $(C/EBP){\alpha}$ and sterol regulatory element-binding protein (SREBP-1). In addition, CSE highly increased antioxidant activity in a dose-dependent manner. CSE remarkably reduced intracellular ROS increase and NAD(P)H oxidase activity, NOX1, NOX4, Rac1 protein expression, and phosphorylation of p47phox and p67phox We also studied the effect of CSE on weight gain induced by high-fat diet. The oral treatment of CSE (500 mg/kg, body weight) in diet-induced obese (DIO) mice showed decrease in triglyceride and adipocyte size. Therefore, these results indicate that the effect of CSE on anti-obese effects, adipocyte differentiation and reducing triglyceride contents as well as adipocyte size in obese mice, may be associated with inhibition of NAD(P)H oxidase-induced ROS production and adipose transcription factors. These results showed the potential to inhibit the obesity by CSE treatment through controlling the activation of NAD(P)H oxidase in vitro and in vivo obese model.

Effect of Green Tea on Mixed Functon Oxidase System and Xanthine Oxidase Activities in Rat Liver Exposed to Microwaves (전자파를 조사한 흰쥐 간조직에서의 Mixed Function Oxidase System과 Xanthine Oxidase 활성에 미치는 녹차의 영향)

  • 이순재;이용희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.1
    • /
    • pp.168-173
    • /
    • 2000
  • The purpose of this study was to investigate the changes of microsomal mixed function oxidase (MFO) and xanthine oxidase activities (XOD) in the liver of rats exposed to microwave. Sprague-Dawley male rats weighing 200$\pm$10g body weight were randomly assigned to a normal and microwave exposed(MW) groups; microwave exposed groups were divided into two groups; microwave (MW) group and green tea(GT) gropu which were fed distilled water and green tea extracts during experimental periods, respectively. Rats were irradiated with microwave at the frequency of 2.45 GHz for 15min and rats wre sacrificed at the 4th day of the microwave irradiaton. The hemoglobin level of GT group was higher than that of the normal gropu and MW group, but the hematocrit value was not significantly different among all experimental gropus. The activity of serum GOT of MW group was significantly increased but that of GT group was similar to normal group. Activities of GPT were not significantly different among all experimental groups. Liver XOD activity was significantly increased in the microwave exposed groups but green tea normalized the XOD activity. The activity of hepatic microsomal cytochrome P450 was significantly increased in MW group compared to normal group and that of GT group was similar to that of the normal group. The activity of hepatic microsomal NADPH-cytochrome P450 reductase was also significantly increased in MW group compared to normal group, but that of GT group was similar to that fo the normal group. In conclusion, the activities of MFO and XOD were elevated by microwave irradiaton, but the activation of MFO system as well as the damage of the liver by microwave were reduced by green tea supplementation.

  • PDF

Role of Nox4 in Neuronal Differentiation of Mouse Subventricular Zone Neural Stem Cells (쥐의 뇌실 하 영역(SVZ) 신경 줄기 세포의 신경 세포로의 분화 과정에서 Nox4의 역할)

  • Park, Ki-Youb;Na, Yerin;Kim, Man Su
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.8-16
    • /
    • 2016
  • Reactive oxygen species (ROS), at appropriate concentrations, mediate various normal cellular functions, including defense against pathogens, signal transduction, cellular growth, and gene expression. A recent study demonstrated that ROS and ROS-generating NADPH oxidase (Nox) are important in self-renewal and neuronal differentiation of subventricular zone (SVZ) neural stem cells in adult mouse brains. In this study, we found that endogenous ROS were detected in SVZ neural stem cells cultured from postnatal mouse brains. Nox4 was predominantly expressed in cultured cells, while the levels of the Nox1 and Nox2 transcripts were very low. In addition, the Nox4 gene was highly upregulated (by up to 10-fold) during neuronal differentiation. Immunocytochemical analysis detected the Nox4 protein mainly in neurons positive for the neuronal specific tubulin Tuj1. After differentiation, endogenous ROS were detected exclusively in neuron-like cells with processes. In addition, perturbation of the cellular redox state with N-acetyl cysteine, a ROS scavenger, during neuronal differentiation greatly inhibited neurogenesis. Lastly, knockdown of Nox4 using short hairpin RNA decreased neurogenesis. These findings suggest that Nox4 may be a major ROS-generating enzyme in postnatal SVZ neural stem cells, and Nox4-mediated ROS generation may be important in their neuronal differentiation.

Effects of Catechin on Mixed Function Oxidase System and Oxidative Damage in Rat Liver Exposed to Microwave (전자파 조사 흰쥐 간조직의 Mixed Function Oxidase System과 산화적 손상에 미치는 Catechin의 영향)

  • 김미지;이준하;이순재
    • Journal of Nutrition and Health
    • /
    • v.34 no.3
    • /
    • pp.299-305
    • /
    • 2001
  • The purpose of this study was to investigate the effects of catechin on the changes of microsomal mixed function oxidase(MFO) system and oxidative damage in rat liver exposed to microwave. Sprague-Dawley male rats weighing 200$\pm$10g body weight were randomly assigned to one normal and microwave exposed groups: microwave exposed groups were divided three groups: catechin free diet(MW) group, 0.25% catechin(MW+0.25C) group and 0.5% catechin(MW+0.5C) group to the levels of dietary catechin supplementation. The rats were irradiated with microwave at frequency 2.45GHz for 15 min and then the changes pattern of mixed function oxidase system and oxidative damage were investigated for 16 days. The activity of XOD in MW group was increased from 4 day to 8 days after irradiation, compared to normal group and decreased to the level of normal group 16 days. But catechin supplementation group were maintained to the normal level. The contents of cytochrome P(sub)450 and NADPH cytochrome P(sub)450 reductase activities in liver of MW group was increased from 4 day to 8 day after irradiation, compared to normal group and decreased to the level of normal group at 16 day. But catechin supplementation group were recovered to the normal level. The contents of superoxide radical in liver of MW group was increased 1.28, 1.25, 1.17 fold of normal group at 4,6 and 8 days days after irradiation. respectively, but catechin supplementation group were maintained the normal level. The contents of lipifuscin in liver have a same tendency in superoxide radical contents. These result suggested that the supplementation of catechin have control the mixed function oxidase system and oxidative damage and that may help to recover tissues from microwave damage. (Korean J Nutrition 34(3) : 299~305, 2001)

  • PDF

NADPH Oxidase and Mitochondrial ROS are Involved in the $TNF-{\alpha}$-induced Vascular Cell Adhesion Molecule-1 and Monocyte Adhesion in Cultured Endothelial Cells

  • Yu, Jae-Hyeon;Kim, Cuk-Seong;Yoo, Dae-Goon;Song, Yun-Jeong;Joo, Hee-Kyoung;Kang, Gun;Jon, Ji-Yoon;Park, Jin-Bong;Jeon, Byeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.4
    • /
    • pp.217-222
    • /
    • 2006
  • Atherosclerosis is considered as a chronic inflammatory process. However, the nature of the oxidant signaling that regulates monocyte adhesion and its underlying mechanism is poorly understood. We investigated the role of reactive oxygen species on the vascular cell adhesion molecule-1 (VCAM-1) and monocyte adhesion in the cultured endothelial cells. $TNF-{\alpha}$ at a range of $1{\sim}30\;ng/ml$ induced VCAM-1 expression dose-dependently. BCECF-AM-labeled U937 cells firmly adhered on the surface of endothelial cells when the endothelial cells were incubated with $TNF-{\alpha}$ (15 ng/ml). Ten $\;{\mu}mol/L$ of SB203580, an inhibitor of p38 MAPK, significantly reduced $TNF-{\alpha}-induced$ VCAM-1 expression, compared to the JNK inhibitor ($40\;{\mu}mol/L$ of SP60015) or ERK inhibitor ($40\;{\mu}mol/L$ of U0126). Also, SB203580 significantly inhibited $TNF-{\alpha}-induced$ monocyte adhesion in HUVEC. Superoxide production was minimal in the basal condition, however, treatment of $TNF-{\alpha}$ induced superoxide production in the dihydroethidineloaded endothelial cells. Diphenyleneiodonium (DPI, $10\;{\mu}mol/L$), an inhibitor of NADPH oxidase, and rotenone $(1\;{\mu}mol/L)$, an inhibitor of mitochondrial complex I inhibited $TNF-{\alpha}-induced$ superoxide production, VCAM-1 expression and monocyte adhesion in the endothelial cells. Taken together, our data suggest that NADPH oxidase and mitochondrial ROS were involved in $TNF-{\alpha}-induced$ VCAM-1 and monocyte adhesion in the endothelial cells.

Enhancement of Allergen-induced Airway Inflammation by NOX2 Deficiency

  • Won, Hee-Yeon;Jang, Eun-Jung;Min, Hyun-Jung;Hwang, Eun-Sook
    • IMMUNE NETWORK
    • /
    • v.11 no.3
    • /
    • pp.169-174
    • /
    • 2011
  • Background: NADPH oxidase (NOX) modulates cell proliferation, differentiation and immune response through generation of reactive oxygen species. Particularly, NOX2 is recently reported to be important for regulating Treg cell differentiation of CD4+ T cells. Methods: We employed ovalbumin-induced airway inflammation in wild-type and NOX2-deficient mice and analyzed tissue histopathology and cytokine profiles. Results: We investigated whether NOX2-deficiency affects T cell-mediated airway inflammation. Ovalbumin injection which activates T cell-mediated allergic response increased airway inflammation in wild-type mice, as evidenced by increased immune cell infiltration, allergic cytokine expression, and goblet cell hyperplasia in the lung. Interestingly, NOX2 knockout (KO) mice were more susceptible to allergen-induced lung inflammation compared to wild-type mice. Immune cells including neutrophils, lymphocytes, macrophages, and eosinophils were drastically infiltrated into the lung of NOX2 KO mice and mucus secretion was substantially increased in deficiency of NOX2. Furthermore, inflammatory allergic cytokines and eotaxin were significantly elevated in NOX2 KO mice, in accordance with enhanced generation of inflammatory cytokines interleukin-17 and interferon-${\gamma}$ by CD4+ T cells. Conclusion: These results indicate that NOX2 deficiency favorably produces inflammatory cytokines by T cells and thus increases the susceptibility to severe airway inflammation.

The NADPH oxidase inhibitor diphenyleneiodonium suppresses Ca2+ signaling and contraction in rat cardiac myocytes

  • Qui Anh Le;Tran Nguyet Trinh;Phuong Kim Luong;Vu Thi Van Anh;Ha Nam Tran;Joon-Chul Kim;Sun-Hee Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.4
    • /
    • pp.335-344
    • /
    • 2024
  • Diphenyleneiodonium (DPI) has been widely used as an inhibitor of NADPH oxidase (Nox) to discover its function in cardiac myocytes under various stimuli. However, the effects of DPI itself on Ca2+ signaling and contraction in cardiac myocytes under control conditions have not been understood. We investigated the effects of DPI on contraction and Ca2+ signaling and their underlying mechanisms using video edge detection, confocal imaging, and whole-cell patch clamp technique in isolated rat cardiac myocytes. Application of DPI suppressed cell shortenings in a concentration-dependent manner (IC50 of ≅0.17 µM) with a maximal inhibition of ~70% at ~100 µM. DPI decreased the magnitude of Ca2+ transient and sarcoplasmic reticulum Ca2+ content by 20%-30% at 3 µM that is usually used to remove the Nox activity, with no effect on fractional release. There was no significant change in the half-decay time of Ca2+ transients by DPI. The L-type Ca2+ current (ICa) was decreased concentration-dependently by DPI (IC50 of ≅40.3 µM) with ≅13.1%-inhibition at 3 µM. The frequency of Ca2+ sparks was reduced by 3 µM DPI (by ~25%), which was resistant to a brief removal of external Ca2+ and Na+. Mitochondrial superoxide level was reduced by DPI at 3-100 µM. Our data suggest that DPI may suppress L-type Ca2+ channel and RyR, thereby attenuating Ca2+-induced Ca2+ release and contractility in cardiac myocytes, and that such DPI effects may be related to mitochondrial metabolic suppression.

Molecular Mechanisms of Generation for Nitric Oxide and Reactive Oxygen Species, and Role of the Radical Burst in Plant Immunity

  • Yoshioka, Hirofumi;Asai, Shuta;Yoshioka, Miki;Kobayashi, Michie
    • Molecules and Cells
    • /
    • v.28 no.4
    • /
    • pp.321-329
    • /
    • 2009
  • Rapid production of nitric oxide (NO) and reactive oxygen species (ROS) has been implicated in the regulation of innate immunity in plants. A potato calcium-dependent protein kinase (StCDPK5) activates an NADPH oxidase StRBOHA to D by direct phosphorylation of N-terminal regions, and heterologous expression of StCDPK5 and StRBOHs in Nicotiana benthamiana results in oxidative burst. The transgenic potato plants that carry a constitutively active StCDPK5 driven by a pathogen-inducible promoter of the potato showed high resistance to late blight pathogen Phytophthora infestans accompanied by HR-like cell death and $H_2O_2$ accumulation in the attacked cells. In contrast, these plants showed high susceptibility to early blight necrotrophic pathogen Alternaria solani, suggesting that oxidative burst confers high resistance to biotrophic pathogen, but high susceptibility to necrotrophic pathogen. NO and ROS synergistically function in defense responses. Two MAPK cascades, MEK2-SIPK and cytokinesis-related MEK1-NTF6, are involved in the induction of NbRBOHB gene in N. benthamiana. On the other hand, NO burst is regulated by the MEK2-SIPK cascade. Conditional activation of SIPK in potato plants induces oxidative and NO bursts, and confers resistance to both biotrophic and necrotrophic pathogens, indicating the plants may have obtained during evolution the signaling pathway which regulates both NO and ROS production to adapt to wide-spectrum pathogens.

Protective Effect of Spatholobi Caulis in Thioacetamide induced Acute Liver Injury of Rat (Thioacetamide로 유발한 간손상 모델에서 계혈등(鷄血藤)의 간보호 효과)

  • Oh, Min Hyuck;Shin, Mi-Rae;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.36 no.2
    • /
    • pp.31-42
    • /
    • 2021
  • Objectives : This study was undertaken to investigate the hepatoprotective effect of Spatholobi Caulis water extract (SC) to thioacetamide (TAA)-induced acute liver injury (ALI) in rats. Methods : The rats were injected intraperitoneally with TAA (200 mg/kg body weight) and orally administered SC (100 or 200 mg/kg b.w.) daily for 3 days. Liver biomarkers were assessed by serum glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and ammonia levels. Malondialdehyde (MDA) was measured both serum and liver tissue. In addition, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, anti-oxidant, and inflammation-related proteins were investigated by western blot analysis. Histological examination further confirmed though hematoxylin and eosin stain. Results : The SC treatment reduced liver function markers like GOT and GPT and also remarkably decreased ammonia level. Moreover, the elevated MDA level in TAA-induced group was significantly reduced by SC treatment. NADPH oxidase expression associated with oxidative stress including NOX2, NOX4, and p47phox markedly inhibited by SC administration. SC treatment exerted anti-oxidant effect through the increase of anti-oxidant enzyme including superoxide dismutase (SOD), Catalase, and heme oxygenase-1 (HO-1). The protein expressions of inflammatory cytokines such as tumor necrosis factor-�� (TNF-��), IL-6, and IL-1�� induced by nuclear factor-kappa B (NF-��B) activation were modulated through blocking the phosphorylation of inhibitor of nuclear factor ��B�� (I��B)��. SC treatment also improved histological alterations. Conclusion : These findings suggested that SC administration may be a potential candidate for the prevention or treatment of ALI.