• 제목/요약/키워드: N-transform

검색결과 714건 처리시간 0.032초

OPERATORS A, B FOR WHICH THE ALUTHGE TRANSFORM ${\tilde{AB}}$ IS A GENERALISED n-PROJECTION

  • Bhagwati P. Duggal;In Hyoun Kim
    • 대한수학회보
    • /
    • 제60권6호
    • /
    • pp.1555-1566
    • /
    • 2023
  • A Hilbert space operator A ∈ B(H) is a generalised n-projection, denoted A ∈ (G-n-P), if A*n = A. (G-n-P)-operators A are normal operators with finitely countable spectra σ(A), subsets of the set $\{0\}\,{\cup}\,\{\sqrt[n+1]{1}\}.$ The Aluthge transform à of A ∈ B(H) may be (G - n - P) without A being (G - n - P). For doubly commuting operators A, B ∈ B(H) such that σ(AB) = σ(A)σ(B) and ${\parallel}A{\parallel}\,{\parallel}B{\parallel}\;{\leq}\;{\parallel}{\tilde{AB}}{\parallel},$ ${\tilde{AB}}\;{\in}\;(G\,-\,n\,-\,P)$ if and only if $A\;=\;{\parallel}{\tilde{A}}{\parallel}\,(A_{00}\,{\oplus}\,(A_0\,{\oplus}\,A_u))$ and $B\;=\;{\parallel}{\tilde{B}}{\parallel}\,(B_0\,{\oplus}\,B_u),$ where A00 and B0, and A0 ⊕ Au and Bu, doubly commute, A00B0 and A0 are 2 nilpotent, Au and Bu are unitaries, A*nu = Au and B*nu = Bu. Furthermore, a necessary and sufficient condition for the operators αA, βB, αà and ${\beta}{\tilde{B}},\;{\alpha}\,=\,\frac{1}{{\parallel}{\tilde{A}}{\parallel}}$ and ${\beta}\,=\,\frac{1}{{\parallel}{\tilde{B}}{\parallel}},$ to be (G - n - P) is that A and B are spectrally normaloid at 0.

디지털 영상 처리를 위한 Quincunx 표본화가 사용된 이중 트리 이산 웨이브렛 변환 (Dual-tree Wavelet Discrete Transformation Using Quincunx Sampling For Image Processing)

  • 신종홍
    • 디지털산업정보학회논문지
    • /
    • 제7권4호
    • /
    • pp.119-131
    • /
    • 2011
  • In this paper, we explore the application of 2-D dual-tree discrete wavelet transform (DDWT), which is a directional and redundant transform, for image coding. DDWT main property is a more computationally efficient approach to shift invariance. Also, the DDWT gives much better directional selectivity when filtering multidimensional signals. The dual-tree DWT of a signal is implemented using two critically-sampled DWTs in parallel on the same data. The transform is 2-times expansive because for an N-point signal it gives 2N DWT coefficients. If the filters are designed is a specific way, then the sub-band signals of the upper DWT can be interpreted as the real part of a complex wavelet transform, and sub-band signals of the lower DWT can be interpreted as the imaginary part. The quincunx lattice is a sampling method in image processing. It treats the different directions more homogeneously than the separable two dimensional schemes. Quincunx lattice yields a non separable 2D-wavelet transform, which is also symmetric in both horizontal and vertical direction. And non-separable wavelet transformation can generate sub-images of multiple degrees rotated versions. Therefore, non-separable image processing using DDWT services good performance.

Summarized IDA curves by the wavelet transform and bees optimization algorithm

  • Shahryari, Homayoon;Karami, M. Reza;Chiniforush, Alireza A.
    • Earthquakes and Structures
    • /
    • 제16권2호
    • /
    • pp.165-175
    • /
    • 2019
  • Incremental dynamic analysis (IDA), as an accurate method to evaluate the parameters of structural performance levels, requires many non-linear time history analyses, using a set of ground motion records which are scaled to different intensity levels. Therefore, this method is very computationally demanding. In this study, a new method is presented to estimate the summarized (16%, 50%, and 84% fractiles) IDA curves of a first-mode dominated structure using discrete wavelet transform and bees optimization algorithm. This method reduces the number of required ground motion records for the prediction of the summarized IDA curves. At first, a subset of first list ground motion records is decomposed by means of discrete wavelet transform which have a low dispersion estimating the summarized IDA curves of equivalent SDOF system of the main structure. Then, the bees algorithm optimizes a series of factors for each level of detail coefficients in discrete wavelet transform. The applied factors change the frequency content of original ground motion records which the generated ground motions records can be utilized to reliably estimate the summarized IDA curves of the main structure. At the end, to evaluate the efficiency of the proposed method, the seismic behavior of a typical 3-story special steel moment frame, subjected to a set of twenty ground motion records is compared with this method.

Q 인자의 조절이 가능한 이산 웨이브렛 변환을 이용한 디지털 영상처리 (Digital Image Processing Using Tunable Q-factor Discrete Wavelet Transformation)

  • 신종홍
    • 디지털산업정보학회논문지
    • /
    • 제10권3호
    • /
    • pp.237-247
    • /
    • 2014
  • This paper describes a 2D discrete-time wavelet transform for which the Q-factor is easily specified. Hence, the transform can be tuned according to the oscillatory behavior of the image signal to which it is applied. The tunable Q-factor wavelet transform (TQWT) is a fully-discrete wavelet transform for which the Q-factor, Q, of the underlying wavelet and the asymptotic redundancy (over-sampling rate), r, of the transform are easily and independently specified. In particular, the specified parameters Q and r can be real-valued. Therefore, by tuning Q, the oscillatory behavior of the wavelet can be chosen to match the oscillatory behavior of the signal of interest, so as to enhance the sparsity of a sparse signal representation. The TQWT is well suited to fast algorithms for sparsity-based inverse problems because it is a Parseval frame, easily invertible, and can be efficiently implemented. The TQWT can also be used as an easily-invertible discrete approximation of the continuous wavelet transform. The transform is based on a real valued scaling factor (dilation-factor) and is implemented using a perfect reconstruction over-sampled filter bank with real-valued sampling factors. The transform is parameterized by its Q-factor and its oversampling rate (redundancy), with modest oversampling rates (e. g. 3-4 times overcomplete) being sufficient for the analysis/synthesis functions to be well localized. Therefore, This method services good performance in image processing fields.

DCT 행렬 분해에 관한 연구 (On Factorizing the Discrete Cosine Transform Matrix)

  • 최태영
    • 한국통신학회논문지
    • /
    • 제16권12호
    • /
    • pp.1236-1248
    • /
    • 1991
  • 행렬 분해방식에 의한 새로운 고속 DCT 연산 방법을 유도하였다. N점 DCT변환을 N/2점 DCT 변환과 2개의 N/4점 변환들로 얻을수 있었다. 이 방법은 곱셈작용이 대부분 신호 흐름도상의 출력단에 가깝게 있게 되어 유한길이 연산인 경우에 발생하는 반올림 오차량이 기존의 Lee와 Chen 방법에 비하여 배우 적다는 점이 장점이다. 그리고 곱셈작용의 위치는 다르지만 동일 연산량을 갖는 또다른 3개의 DCT 행렬분해 결과도 보였다.

  • PDF

다중 해상도 웨이블릿 변환과 영상 융합을 이용한 워터마킹 (Watermarking Using Multiresolution Wavelet Transform and Image Fusion)

  • 김동현;전계석;이대영
    • 정보처리학회논문지B
    • /
    • 제12B권7호
    • /
    • pp.729-736
    • /
    • 2005
  • 본 논문에서 디지털 워터마킹을 위해 제안한 방법은 다중 해상도 웨이블릿 변환을 기본으로 하고 있다. 영상 데이터의 저작권 보호를 위해 필요한 워터마크로 $2N_{wx}{\times}2N_{wy}$ 크기의 이진 로고영상의 1 레벨 DWT(discrete wavelet transform) 계수값을 사용하였다. 대상 영상을 3 레벨 DWT한 후 LL 영역과 중주파수 대역을 $N_{wx}{\times}N_{wy}$ 크기로 분할하고, 분할된 블록내 값이 큰 계수값들을 이용하여 임계값을 설정한다. 대상 영상의 각 주파수 대역마다 설정되는 임계값은 동일 대역의 워터마크가 다 삽입될 수 있는 값을 기준으로 정한다 즉, 각 주파수 대역마다 임계값을 설정해야 한다. 대상 영상의 화질 저하를 막기 위해 블록내 임계값 이상인 부분에 대해 워터마크의 동일 위치 값을 삽입한다. 워터마크를 대상 영상의 LL 영역 및 중주파수 대역에 삽입한다. 워터마크를 인간의 시각 시스템으로부터 감추기 위해 워터마크에 HVS(human visual system)을 적용하여 삽입하였다 따라서 본 논문에서 제안한 기법은 워터마크의 빠르고 정확한 검출이 가능하며, HVS가 적용된 작은 크기의 워터마크를 삽입함으로써 비가시성과 강건성이 뛰어나다는 장점이 있다.

A Generalized Fourier Transform Based on a Periodic Window

  • Yoo, Kyung-Yul
    • The Journal of the Acoustical Society of Korea
    • /
    • 제15권4E호
    • /
    • pp.53-57
    • /
    • 1996
  • An extension of the well-known Fourier transform is developed in this paper. It is denoted as the generalized Fourier transform(GFT), since it encompasses the Fourier transform as its special case. The first idea of this extension can be found on [1]. In the definition of the N-point discrete GFT, it first construct a passband in time which functions as a window in the time domain. An appropriate interpretation of each variables are introduced during the definition of the GFT, followed by the formal derivation of the inverse GFT. This transform pair is similar to the windowing in the frequency domain such as the subband coding technique (or filter bank approach) and could be extended to the wavelet transform.

  • PDF

CONDITIONAL INTEGRAL TRANSFORMS OF FUNCTIONALS ON A FUNCTION SPACE OF TWO VARIABLES

  • Bong Jin, Kim
    • Korean Journal of Mathematics
    • /
    • 제30권4호
    • /
    • pp.593-601
    • /
    • 2022
  • Let C(Q) denote Yeh-Wiener space, the space of all real-valued continuous functions x(s, t) on Q ≡ [0, S] × [0, T] with x(s, 0) = x(0, t) = 0 for every (s, t) ∈ Q. For each partition τ = τm,n = {(si, tj)|i = 1, . . . , m, j = 1, . . . , n} of Q with 0 = s0 < s1 < . . . < sm = S and 0 = t0 < t1 < . . . < tn = T, define a random vector Xτ : C(Q) → ℝmn by Xτ (x) = (x(s1, t1), . . . , x(sm, tn)). In this paper we study the conditional integral transform and the conditional convolution product for a class of cylinder type functionals defined on K(Q) with a given conditioning function Xτ above, where K(Q)is the space of all complex valued continuous functions of two variables on Q which satify x(s, 0) = x(0, t) = 0 for every (s, t) ∈ Q. In particular we derive a useful equation which allows to calculate the conditional integral transform of the conditional convolution product without ever actually calculating convolution product or conditional convolution product.

비선형 구조물의 매개변수 규명 (Parameter Identifieation of Nonlinear Structure)

  • 김우영;황원걸;기창두
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.363-368
    • /
    • 1993
  • Hilbert Transform has been used for detection of nonlinearity in modal analysis. HTD(Hilbert Transform Describers) are used to quantify and identify nonlinearity. Mottershead and Stanway method for identification of N-th power velocity nonlinear damping are extended to P-th power displacement stiffness, N-th power velocity damping and dry friction. Time domain and frequency domain data are used and HTD and Mottershead methods are combined for identification of nonlinear parameters in this paper. Computer simulations and experimental results are shown to verify nonlinear structure identification methods.

  • PDF