53

A Generalized Fourier Transform Based on a Periodic Window

*Kyung-Yul Yoo

Abstract

An extension of the well-known Fourier transform is developed in this paper. [t is denoted as the generalized Fourier trans-

form(GFT), since it encompasses the Fouricr transform as its special case. The first idea of this cxtension can be found on

[1). In the definition of the N-point discrete GFT, it firsl construct a passband in lime which functions as a window in the

time domain. An appropriale interpretation of cach variabics are introduced during the definition of the GFT, followed by

the formal derivation of the inverse GET. This transform pair is similar to the windowing in the frequency domain such as
the subband coding technique {or filter bank approach) and could be exiended 1o the wavelet transform.

I. Introduction

We are familiar with vanious windowing schemes in the
time domain such as Hamming, Hanning, or rectangular
window. The window isolates a section of input signal so
as lo analyze its local property. A series of overlapping win-
dows arc then applicd to the whole input signal, which
leads to the well-known short-time Fourier Transform
(STFT). This approach has been quite successiul for the
analysis of quasi-stationary signatl. However, there would
be an situation where it is necessary Lo assume a period-
ical isolation instead of the local isolalien of the inpul
signal. This idea has been a molivation of s study,
which employs a sequence of windows whose location
and width are determined by the designer.

An extension of the well-kknown Fourier {ransform is
developed in this paper. It is denoted as the gencralized
Fourier transform{GFT), since it encompasses the Four-
ier transform as a special case. The first idea of this ex-
tension starts on [1]. In the definition of the GFT, which
covers Lhe next seclion, il first constructs a passband in
time which funclions as a periodic window in the time
domain. A delinition of the GDFT, followed by the formal
derivation of the inverse GFT, is presented. This trans-
form pair is similar to the windowing in the frequency
domain such as the subband coding technique ‘or filter
bank approach). The basic difference is that the former is
in Lhe time domain and the later is in the frequency do-
main. Section [II studies the structure of the coefficicnt

matnx in a search for an efficienl way calculating its for-
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ward and backward conversion.

{l. Generalized Fourier transform

Start from lhe onginat Fouricr transform of a function
¥(?¢) such that

V()= [ ofyertdr (1)

it is straight-forward to show that, for all square inte-
prable signals [1)

Toow

Vif)= £ ot +nT)e ™4t )
where T=1/f. For example, if #{f)=¢", { 20, it is easy
to verify Eqns. (1) and (2) produce lhe same resuil. In
Eq. (2), a signal is cumulated within the interval [0, 7]
for each frequency f, then multiplicd by the cxponential
term, expl -~ f2nff}, which completcs one period in each
intcrval of leagth 7.

1. The generalized Fourier transform

Suppose that two interesting events occur periodically in
the signal with different frequencics and duration which is
short compared to the entirc time interval of interest.
Two pulse trains with close frequency and different width
would be a good example. Also suppose that we wanl 1o
enhance the detectability of these pulses. An algorithm with
good resolutions on both time and frequency domain
would be required for this purposc. As one approach, the
GFT first modifies the basis function set of the usual
Fourier transform, that isy from the complex exponential
fexp(—72n/D) to {exp{ — 72n8fD)}. Then the generaliza-



54

tion is achieved by construcling a sequence of windows in
lime which is periodic. Since it is different from the nor-
mal window, we shall denole it as a passband in time. If
one of the pulse is resiricted within only one of the
passband, then the GFT would do a betler job of dete-
cting this occurrence than the Fourier transform. These
passbands can be made as small as desired, thus incrcas-
ing the detectability of the prescribed events. Also, we can
increase Lhe cffective length of the detection interval as a
percentage of the data length. The reduction in passband
width is limiled only by the length ol the pulse to be dete-
cled. When this passband is centered at £ where 0 /p <
T, and of width 7°/8, we could use a variable, ¢ =2rép/T
and deline the generalized Fourier transform by

=3,
Vif, . 8= | ool +%)e‘”“""dr 3

¥ n "= -x
E (“7)

where 82> 0 and 0<¢ < 2n. Note that the Fourier trans-
form is a special case of the GFT for ¢ == and #=1. Fig-
ure | shows graphical description of the transform, where
one can sce that the variable ¢ determines Lhe ocation of
passband and # specifies its width. In tlas way, we can
get extra two-degrees of freedom. As an example, con-
sider the exponential signal, /) =¢ "', t 2 0. From Eq.(2),

=g
VIF, 4. 8= | L e vtnDo-imasi gy

n-¢
3 (3

etc.

(t+2/F)

0 k/{_ﬁr

(a)
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The third cquation follows from the geometric series No-
tice that for ¢ =n and B=1, this cxpression reduces (o
the Fourier translorm for the exponential. To see this,
note that the numerator reduces to 1 —expl —1//} thus
yiclding

By inlroducing 8, one could adjust the frequency of the
rolatling phasor so thal one cycle is completed within a
band of length 7/8. However, £ should be restricted lo
be an integer, unless we lost the orthogonality and hence
the completeness of the basis function sel {expl—;2n8/1).
For an inleger value of 8. Eq. (3) becomes by interchang-
ing summation and integration

o

VIS g, BY= [ vlt)e ™4/t 4t (4a)

e

where

) =vt), for 16-2nf1 - mod(2m}] < -/’-;;

{b)

Figure 1. An illustration for (a} Fourier Transforin and (b} Pass-

band (for 8 =3)
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=0, otherwise {4b)

il we discretize the vaiue of ¢ in such a way that the
first passband of width T/# starts from #=0 - mod(7T),
then, the GFT can be represented as

Vi )= | Z ot +kT)e 28/ gt 5
i_th k=-w
=V{f, ¢ Bly-a +11n/s 5

where an index for the /™ passband is used instead of ¢
fori=0, -, 8.

Since the basis function scl {exp(—72r8/f)}} is com-
plcte, the original ime signal one could be reconstructed,
il Vi, A f) is known for all £, and 7. One can show that
the inverse can be calculated by

@ gy
wr=2 [T vidnemonar ®
—ue §-0

Also, since

0

V(RS)= | wt)e /> dt

-

-5 (ot +hT e dy ™
[

ko

g3 G+NTIE o

=Y [ % o +ETY e g

=0 iTE k=-w

it is clear that the Fourier transform of (£} at Irequency
Bf is equal to the sum of passbands for the GFT at (re-
quency £, that is,

8-
Vgsf)= EO Vislf) @)

Thus, to evaluate the inverse transform for fixed integer
£ using Eq. (6), the procedure is as follows: add the terms
Vi (/) from each passband, mulliply by exp{ f2n8/¢},
and integrate it over /. Then multiply the result by 8/2n.

2. The generalized discrete Fourier transform

As we used the Fourier transform to derive the GFT,
wc could make use of the N-point disctete Fourier trans-
form (DFT) in deriving the generalized discrete Fourier
transform (GDFT). Since the N-point DFT is dcfined by

N-l

ViEy= 3 vln) )

x=0

where W =exp{—}j2n/N), we can get through a simple op-

cralion

85
e<N/k k-2
viR}= ¥ X 0(Q+%NJ)W"* 10
e=0 m=o0

This corresponds to Eq. (2) for the Fourier iransiorm,
The N-point GDFT is then defined by selecting a portion
of the time interval of length N/&#, multiplying time
function by the proper exponential, and then summing

over this interval. For integer g, it is defined to be

N-t
Vik, d. 8)= 3 vim)ws (a)
n=0
where
v(in)=v(n), for ¢_-2_1m_k - mod(2n) | < X
= , N 4 ﬂ
=0, otherwise (11b)

and n, k=1, -, N—1, and § =0, ---, §—1. For a given fre-
quency &, we divide the interval, N/, into 8 equidistant
intervals so that Eq. (11} becomes for the #* passband

Vi.i(k)'_' V(ks d, ﬁ)|d={l +2) ni 8 (|2)

When discrete frequency is used in the calculation of
GDFT, the effect of the complex exponential term on the
discrete time samples is the same on both frequency £ in
the GDFT and frequency k<N, in the DFT. For ¢x-
ample, when &2=3 in DFT, (1), (5) and ¥{(9) are multi-
plied by the same cxponential term, #?, sincc W% =
W3 = W3 with N=12. Similarly, when 8=3 and k=1
in GDFT, they are multiplied by the same term, W?, since
W#kn = 3t =3xS = P33 hefore summation. Moreover,
for cach frequency &, one tim¢ sample belongs o only

one passband. Therefore, we have

¥ ] N

Y VidR) =X vn) Wé*=V(8k) 13}
1=0 n=1

This gives the values of V; s(k) al frequencics g& with 2
> 1, skipping values at intermediate frequencies. It causes
a problem of missing frequencies terms. Even though we
have all the information on V; g(k) for all £ and £, it may
not be sufficient to wnvert V(8&) in Eq. (13) using the
usual inverse DFT equation. When, for example, ¥N=12
and, only ©(0), (3), t{6), and (9) are available.

In GDFT, one period of the lime segment for each dis-
crete frequency 1s divided into £ parts, each of which is
characterized by one passband. The maximum number of
discrete time samples that could be sampled in each pass-
band is [N/8], where [x] represents the smallest integer
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greater than or equal to x. Therefore, it is natural to yicld
only | N/A| meaningful spectral components. In order
avoid lhis situation, the sampling rate needs to be incre-
ased by a factor of 8 and thus provide enough discrete-
time samples. If a fraction of the continuous waveform
which belongs to a particular passband be sampled
enough, then it becomes possible to reconstruct the orig-
inal waveform based on the Eq. (13). Othcrwise, there
would be some missing frequency lerms during lhe in-
verse GDFT compulation as explained.

When the sampling rale is increascd by a faclor of 8in
order 1o sample N data within the given interval of a pass-
band, the discrete frequency values need to be changed
accordingly. 11 is possibly donc with a serics ol interp-
olation and decimation process. Other possible approach
is using fractional values of frequency, £=1/8. -, N/B.
so that cach passband for each discrete frequency have wp

1o N data samplcs. Then, the inverse GDFT becomes

I N‘—1 5T—‘I k "
= L L Ved—Iwn (14)
o) N S S Ts

M. Structure of GDFT

From Eq. (11}, the computation of V; z(k) could be
expressd by a matrix equation
A pq=vig (15)
where the coellicient matrix by A; 5, 2=0, -, 8—1 is de-
fined lor each passband and its components consists of
the sum of tme samples. The vectors v, » and q are

GF-transformed column vector and phasor column vector
such that

vi, g=vi 2t/ 8 vi 2/8) - v; s(N/O}T
q=|w W ... w¥|7 (i6)
Note that the column vector, q, does not depends on S,
but is determined only by the exponential terms.

Since the GDFT is an extension of the DFT, it still has
some properties of the DFT which leads to the implemen-
tation of the FFT algorithm. They could be analyzed
through the investigation of the struclure of the GDFT
cocflicicnt matrix. The coefficient matrix A, s is an (N X
N} square matrix whose row and column correspond lo
the frequency and sampling peoints within the passband,
respectively. Therefore, the clement A; (&, £) is the sum

of discrete-time samples which share the multiplication
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factor Wt for a discrele frequency k/& and the first step
lo the formation of the coefficient matrix would be
detecting which samples belong to a given passband for
cach frequency. One could see that the formation ol A; 3
is controlled by a modulo function mapping samples into
the trequency domain. The mapping lunction depends on
both integer lTequency and sampling point, that is, a dis-

crele-time sample 2(2) s summed to A, 4k, ) if and

only il it satisfies the following two conditions

. N . N
-1 F; <nk<i ;

Bnk - mod(N)=¢

The formation of A; s shows some interesting proper-
tiecs which would he used for the fast calculation of
GDFT. Most ol its properly arc the same as those used

in the development of the FFT, which are [2]
r.n WHN - WA

(P.2) W = s +8) = ik 1 N

These 1we properties allow us to decompose the compu-
tation of 1he N-potnt DFT into successively smaller
DFTs. The cyclic property (P.2) of the complex sequence,
Wn comes from the assumption of the finitc duration. In
GDFT. only (P.2) can be used, since GDFT involves
with dilfcrent exponential lerm, W, Therefore, an cf-
ficient computation of GDFT should be pursued Lhrough
investigating the behavior of time samples, »(#), depicted

in A, 5 which results in the following properties.

(P.3) For all integer 4> 1, if (N, k)=d then there exists
at least one column € with mose than one n satisfying

Eq. (17). where (2, d) represents the greatest common div-

isor (GCD) between inlegers @ and 8.

(P.4) For a given column numbcer 0, the same occurrence
in mapping lime samples iterates with a cerfain period

within cach sel of frequencies given by {x:(x, N)=d and

x €0, N]} and the period is

(N, &}
(N, @)

Pk, 0Y= N

Proof for (P.3) is slraightforward using the basic number
theory. (P.4) is based on the fact that, if (N, m)=a, (N,
kY=86 and /.=a/5> 1. the modulo equation A»-mod(N) =

€ has at lcast one solution for », il and only if L is a

divisor of m2

{17a)

(17h)

Qag)
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V. Conclusion

We have presented a method for effectively control the
detection interval as a percentage of the data length. This
procedure is called the generalized Fouricr transform
since the special case of g=n and 8=1 gives Ihe usual
formula for the Fourier transform. This transform pair is
derived in this paper, followed by appropriate interpret-
ation of each variable. In a way to perform GDFT oper-
ation, the structure of the coefficient matrix is analyzed.
However, the application of GFT remains uncertain at
this point. Search for the proper application is under in-
vestigation.
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