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A Generalized Fourier Transform Based on a Periodic Window

*Kyung-Yul Yoo

Abstract

An extension of the well-known Fourier transform is developed in this paper. It is denoted as the generalized Fourier trans- 
form(GFT), since it encompasses the Fourier transform as its special case. The first idea of 나lis extension can be found on 
[1]. In the definition of the Appoint discrete GFT, it first construct a passband in time which functions as a window in the 
time domain. An appropriate interpretation of each variables are introduced during the definition of the GFT, followed by 
the formal derivation of the inverse GFT. This transform pair is similar to the windowing in the frequency domain such as 
the subband coding technique (or filter bank approach) and could be extended to the wavelet transform.

I. Introduction

We are familiar with various windowing schemes in the 
time domain such as Hamming, Hanning, or rectangular 
window. The window isolates a section of input signal so 
as to analyze its local property. A series of overlapping win­
dows are then applied to the whole input signal, which 
leads to the well-known short-time Fourier Transform 
(STFT). This approach has been quite successful for the 
analysis of quasi-stationary signal. However, there would 
be an situation where it is necessary to assume a period­
ical isolation instead of the local isolation of the input 
signal. This idea has been a motivation of this study, 
which employs a sequence of windows whose location 
and width are determined by the designer.

An extension of the well-known Fourier transform is 
developed in this paper. It is denoted as the generalized 
Fourier transform(GFT), since it encompasses the Four­
ier transform as a special case. The first idea of this ex­
tension starts on [1]. In the definition of the GFT, which 
covers the next section, it first constructs a passband in 
time which functions as a periodic window tn the time 
domain. A definition of 다ic GDFT, followed by the formal 
derivation of the inverse GFT, is presented. This trans­
form pair is similar to the windowing in the frequency 
domain such as the subband coding technique (or filter 
bank approach). The basic difference is that the former is 
in the time domain and the later is in the frequency do­
main. Section IH studies the structure of the coefficient 
matrix in a search for an efficient way calculating its for-
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ward and backward conversion.

H. Generalized Fourier transform

Start from the original Fourier transform of a function 
v(t) such that

+ 8
V(f)= [ dt (1)

-'ao

it is straight-forward to show that, for all square inte­
grable signals |1]

E V(t +nT)e-^ft dt (2)
0 ，t = — s

where For example, if = f 그 0, it is easy
to verify Eqns. (1) and (2) produce the same result. In 
Eq. (2), a signal is cumulated within the interval [0, T] 
for each frequency /, then multiplied by the exponential 
term, exp{ which completes one period in each
interval of length T.

1. The generalized Fourier transform
Suppose that two interesting events occur periodically in 

the signal with different frequencies and duration which is 
short compared to the entire time interval of interest. 
Two pulse trains with close frequency and different width 
would be a good example. Also suppose that we want to 
enhance the detectability of these pulses. An algorithm with 
good resolutions on both time and frequency domain 
would be required for this purpose. As one approach, the 
GFT first modifies the basis function set of the usual 
Fourier transform, that is? from the complex exponential 
{exp( -jlnff)} to {exp(-y27t/9//)}. Then the generaliza-
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tion is achieved by constructin응 a sequence of windows in 
time which is periodic. Since it is different from the nor- 
m시 window, we shall denote it as a passband in time. If 
one of the pulse is restricted within only one of the 
passband, then the GFT would do a better job of dete­
cting this occurrence than the Fourier transform. These 
passbands can be made as small as desired, Ums increas­
ing the detectability of the prescribed events. Also, we can 
increase the effective length of the detection interval as a 
percentage of the data length. The reduction in passband 
width is limited only by the length of the pulse to be dete­
cted. When this passband is centered at tp where Q<,tP<. 
T, and of width we co비d use a variable,。= 2几£尸/7'
and define the generalized Fourier transform by

壬E) g

火/7,。，£)= f £ v(t H一ft dt (3) 
T I n \ Jdr)

where g>0 and 赤.Note that the Fourier trans­
form is a special case of the GFT for and Fig­
ure 1 shows graphical description of the transform, where 
one can see that the variable。determines the location of 
passband and B specifies its width. In this way, we can 
get extra two-degrees of freedom. As an example, con­
sider the exponential signal, «£) = 厂‘, £ 그：0. From Eq.(2),

V(f,奴 B)= J E e~{t 厂油初dt
E) Q

1—厂〃
厂（1 +加”）f出

exp{ 一 u 顼讷) § “늬 t +遍/)mu—

(1 ~exp(- !//))(! + 丿2?治/)

The third equation follows from the geometric series No­
tice that for 0 = and B=\、this expression reduces to 
the Fourier transform for the exponential. To see this, 
note that the numerator reduces to 1 -exp{ -1//} thus 
yielding

1)=
J

1 노 j&j

By introducing £, one could adjust the frequency of lhe 
rotating phasor so that one cycle is completed within a 
band of length T/fi. However, fi 아suld be restricted to 
be an integer, unless we lost the orthogonality and hence 
the completeness of the basis function set {exp(-/2^//)}. 
For an integer value of B、Eq. (3) becomes by interchang­
ing summation and integration

v나、奴 j v(t)e~^dt (4a) 

where

for \^ — 2nft • mod(2n) I < ~~ 
p

-fintt

(a) (b)

Figure 1. An illustration for (a) Fourier Transform and (b) Pass­
band (for 8 = 3)
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=0, otherwise (4b)

If we discretize the value of。in such a way that the 
first pass band of width T] B starts from / = 0 - mod(T), 
then, the GFT can be represented as

Vi.e<J)= f 立 v(i +kT)e-^,dt (5)
i_th jfc= - co

= 卩(/, 奴 乃)1 妇(I 소司치B (5)

where an index for the ith passband is used instead of。 

for z = 0,…，B.

Since the basis function set {exp(一顶2几胃/'f)} is com­
plete, the original time signal one could be reconstructed, 
if 匕,X/) is known for all /, and i. One can show that 
the inverse can be calculated by

a b
认t) = 브 J E Vi.Me^df (6)

7t —qo £ =；o

Also, since

8
j认t)次冲出

—00

=f： f v(t +kT)e-^'dt ⑺
j6 = -oo 0

A~\ (I+ i)rM 。。

=E j E v(t +kT)e-j2n^>dt 
iT/fi 左=-8

it is clear that the Fourier transform of v(t) at frequency 
Bf is equal to the sum of pass bands for the GFT at fre­
quency /, that is,

v"=£ "心') ⑻

“0

Thus, to evaluate the inverse transform for fixed integer 
B using Eq. (6), the procedure is as follows: add the terms 
匕, 夕(/) from each passband, m니tiply by exp {丿2치。/7}, 
and integrate it over f. Then m니tiply the result by p/ln.

2. The generalized discrete Fourier transform

As we used the Fourier transform to derive the GFT, 
we could make use of the Mpoint discrete Fourier trans­
form (DFT) in deriving the generalized discrete Fourier 
transform (GDFT). Since the Mpoint DFT is defined by

N-\
yQ) 그 E 讽"*서 (9)

M = 0

where W = exp( 一0지N)、we can get through a simple op­
eration

Q5 I N
丫(册=E E Mi■—「)俨t (io)

0 = 0 m = 0 K

This corresponds to Eq. (2) for the Fourier transform. 
The A^-point GDFT is then defined by selecting a portion 
of the time interval of length N/k^, multiplying time 
function by the proper exponential, and then summing 
over this interval. For integer it is defined to be

NT
V{k,奴 $= E iW W^k (Ila)

M = 0

where

v(n) = 0(丸), for I。— 2퍼竺 • mod(27t) < ~~ 
IN I P

=0, otherwise (lib)

and w, k=\,…，N — l, and :=0,…，I. For a given fre­
quency k, we divide the interval, N/k, into B equidistant 
intervals so that Eq. (I I) becomes for the ith passband

匕= 1/侬,奴 时Xi+2服m (12)

When discrete frequency is used in the calculation of 
GDFT, the effect of the complex exponential term on the 
discrete time samples is the same on both frequency k in 
the GDFT and frequency in the DFT. For ex­
ample, when - 3 in DFT, 0(l),状5) and “(9) are multi­
plied by the same exponential term, JF3, since = 
*3x5 = ^3x9 with N= 12. Similarly, when B = 3 and k= I 

in GDFT, they are multiplied by the same term, W3, since 
W緋가 = = 甲3x5 = %/3x9 before summation. Moreover,

for each frequency k, one time sample belongs to only 
one passband. Therefore, we have

8-\ N
E Vi, B(曲 = E V(ti) W&서 = V(fik) (13)
i=0 n=1

This gives the values of Vi, #(^) at frequencies fik with B 
> 1, skipping values at intermediate frequencies. It causes 
a problem of missing frequencies terms. Even though we 
have all the information on 月(为)for all k and i, it may 
not be sufficient to invert V(pk) in Eq. (13) using the 
usual inverse DFT equation. When, for example, TV =12 
and, only 讽0),次3), &(6), and 〃(9) are available.

In GDFT, one period of the time segment for each dis­
crete frequency is divided into B parts, each of which is 
characterized by one passband. The maximum number of 
discrete time samples that could be sampled in each pass­
band is L시7/9], where [x] represents the smallest integer 
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greater than or equal to x. Therefore, it is natural to yield 
only L"이 meaningful spectral components. In order to 
avoid this situation, the sampling rate needs to be incre­
ased by a factor of B and thus provide enough discrete­
time samples. If a fraction of the continuous waveform 
which belongs to a particular passband be sampled 
enough, then it becomes possible to reconstruct the orig­
inal waveform based on the Eq. (13). Otherwise, there 
would be some missing frequency terms during the in­
verse GDFT computation as explained.

When the sampling rate is increased by a factor of B in 
order to sample N data within the given interval of a pass­
band, the discrete frequency values need to be changed 
accordingly. It is possi비y done with a series of interp­
olation and decimation process. Other possible approach 
is using fractional values of frequency, k = \ & …，N]B、 

so that each passband for each discrete frequency have up 
to N data samples. Then, the inverse GDFT becomes

1 nt ff-\ h
zX«) = — E L 匕顶甘)(14) 

N *=o ,=o P

ID. Structure of GDFT

From Eq. (11), the computation of 匕,舶)could be 
expressd by a matrix equation

= (15)

where the coefficient matrix by ? = 0, •••, /9 — 1 is de­
fined for each passband and its components consists of 
the sum of time samples. The vectors v,； Q and q are 
GF-transformed column vector and phasor column vector 
such that

、星 니 B) 징"시 B) … %8(N/3)卩

q니W w1 … WNV (16)

Note that the column vector, q, does not depends on 8, 
but is determined only by the exponential terms.

Since the GDFT is an extension of the DFT, it still has 
some properties of the DFT which leads to the implemen­
tation of the FFT algorithm. They could be analyzed 
through the investigation of the structure of the GDFT 
coefficient matrix. The coefficient matrix 尸 is an (NX 
N) square matrix whose row and column correspond to 
the frequency and sampling points within the passband, 
respectiv이y. Therefore, the element A(； 6) is the sum
of discrete*time samples which share the multiplication 

factor for a discrete frequency k]B and the first step 
to the formation of the coefficient matrix would be 
detecting which samples belong to a given passband for 
each frequency. One could see that the formation of A,.月 

is controlled by a modulo function mapping samples into 
the frequency domain. The mapping function depends on 
both integer frequency and sampling point, that is, a dis­
crete-time sample v(n) is summed to A,； Q) if and 
only if it satisfies the following two conditions

N N
(z-1) — <nk<»i — (17a)

p p

fink • mod(N) = C (17b)

The formation of A/, g shows some interesting proper­
ties which would be used for the fast calculation of 
GDFT. Most of its property are the same as those used 

in 나w development of the FFT, which are [2]

(P.l) 歩札w*가

(P 2) wkn = 十N)= «

These two properties allow us to decompose the compu­
tation of the N-poinl DFT into successively smaller 
DFTs. The cyclic property (P.2) of the complex sequence, 
Wkn comes from the assumption of the finite duration. In 
GDFT, only (P.2) can be used, since GDFT involves 
with different exponential term, W&kn. Therefore, an ef­
ficient computation of GDFT 아io니d be pursued through 
investigating the behavior of time samples, v(n), depicted 
in A,； which resets in the following properties.

(P.3) For all integer d> I, if (N, k) = d then there exists 
at least one column C with more than one n satisfying 
Eq. (17), where (a, b) represents the greatest common div­
isor (GCD) between integers a and b.
(P.4) For a given column number C, the same occurrence 
in mapping lime samples iterates with a certain period 
within each set of frequencies given by (%：(r, N)=d and 
x G (0, NI} and the period is

P能睥駐N (18)

Proof for (P.3) is straightforward using the basic number 
theory. (P.4) is based on the fact that, if (N, ni)~a,(丿V, 
k) = b and L - a/b ) 1, the modulo equation kn - mod(TV)= 
6 has at least one solution for n, if and only if L is a 
divisor of m.
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IV. C아^elusion

We have presented a method for effectively control the 
detection interval as a percentage of the data length. This 
procedure is called the generalized Fourier transform 
since the special case of —and B = \ gives the usual 
formula for the Fourier transform. This transform pair is 
derived in this paper, followed by appropriate interpret­
ation of each variable. In a way to perform GDFT oper­
ation, the structure of the coefficient matrix is analyzed. 
However, the application of GFT remains uncertain at 
this point. Search for the proper application is under in­
vestigation.
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