• Title/Summary/Keyword: N-transform

Search Result 714, Processing Time 0.024 seconds

A Comparative Study of Discrete Wavelet Transform(DWT) and Wavelet Packet Transform(WPT) for a Li-Ion Cell (이차전지의 이산 웨이블릿 변환(DWT) 및 웨이블릿 패킷 변환(WPT) 비교 분석)

  • Kim, J.H.
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.152-153
    • /
    • 2014
  • 본 논문에서는 이차전지의 특성비교/분석을 위해 이산 웨이블릿 변환(DWT;discrete wavelet transform)과 웨이블릿 패킷 변환(WPT;wavelet packet transform)을 적용한 연구를 소개한다. 다해상도 분석(MRA; multi resolution analysis)의 시간-주파수 분석을 통해 저주파 성분(approximation;$A_n$)과 고주파 성분(detail;$D_n$)로 분해되는 것은 두 방법 동일하다. 하지만, 이산 웨이블릿 변환이 단순히 저대역 부분만 계속 분해하는 것과 달리 웨이블릿 패킷 변환은 저대역과 고대역을 모두 분해하여 높은 분해성능을 가지는 웨이블릿의 일반화이다. 웨이블릿 패킷 변환을 자세히 소개하고 이를 이차전지에 적용하여 이산 웨이블릿 변환과의 상관성을 정리하였다.

  • PDF

Modification of Finite Field Based S-box and Its Transform Domain Analysis (유한체 연산 기반의 치환상자 설계 및 변환 영역 특성 분석)

  • Jin, Seok-Yong;Baek, Jong-Min;Song, Hong-Yeop
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.3
    • /
    • pp.3-15
    • /
    • 2007
  • In this paper, we propose a simple scheme which produces a new S-box from a given S-box. We use well-known conversion technique between the polynomial functions over a finite field $F_{2^n}$ and the boolean functions from $F_2^n$ to $F_2$. We have applied this scheme to Rijndael S-box and obtained 29 new S-boxes, whose linear complexities are improved. We investigate their cryptographic properties via transform domain analysis.

A Simple Discrete Cosine Transform Systolic Array Based on DFT for Video Codec (DFT에 의한 비데오 코덱용 DCT의 단순한 시스톨릭 어레이)

  • 박종오;이광재;양근호;박주용;이문호
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.11
    • /
    • pp.1880-1885
    • /
    • 1989
  • In this paper, a new approach for systolic array realizing the discrete cosine transform (DCT) based on discrete Fourier transform (DFT) of an input sequence is presented. The proposed array is based on a simple modified DFT(MDFT) version of the Goertzel algorithm combined with Kung's approach and is proved perfectly. This array requires N cells, one multiplier and takes N clock cycles to produce a complete N-point DCT and also is able to process a continuous stream of data sequences. We have analyzed the output signal-to-noise ratio(SNR) and designed the circuit level layout of one-PE chip. The array coefficients are static adn thus stored-product ROM's can be used in place of multipliers to limit cost as eliminate errors due to coefficients quantization.

  • PDF

An improvement for system identification by use of M-transform

  • Kashiwagi, H.;Liu, M.;Harada, H.;Yamaguchi, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.275-279
    • /
    • 1998
  • In this paper, the authors propose a new method for improving identification method of linear system by us-ing M-transform. The authors has recently proposed a new mettled for linear system identification by use of M-transform. In this method, the input signal n(i) must have the same period N as that of the M-sequence. When N becomes large, it will take a long time to compute. To overcome this difficulty, we propose a new approach of system identification by using a small size matrix. The results of simulation show a good agreement with the theoretical considerations.

  • PDF

CONDITIONAL FIRST VARIATION OVER WIENER PATHS IN ABSTRACT WIENER SPACE

  • CHO, DONG HYUN
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.5
    • /
    • pp.1031-1056
    • /
    • 2005
  • In this paper, we define the conditional first variation over Wiener paths in abstract Wiener space and investigate its properties. Using these properties, we also investigate relationships among first variation, conditional first variation, Fourier-Feynman transform and conditional Fourier-Feynman transforms of functions in a Banach algebra which is equivalent to the Fresnel class. Finally, we provide another method evaluating the Fourier-Feynman transform for the product of a function in the Banach algebra with n linear factors.

The multidimensional subsampling of reverse jacket matrix of wighted hadamard transform for IMT2000 (IMT2000을 위한 하중 hadamard 변환의 다차원 reverse jacket 매트릭스의 서브샘플링)

  • 박주용;이문호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.11
    • /
    • pp.2512-2520
    • /
    • 1997
  • The classes of Reverse Jacket matrix [RJ]$_{N}$ and the corresponding Restclass Reverse Jacket matrix ([RRJ]$_{N}$) are defined;the main property of [RJ]$_{N}$ is that the inverse matrices of them can be obtained very easily and have a special structure. [RJ]$_{N}$ is derived from the weighted hadamard Transform corresponding to hadamard matrix [H]$_{N}$ and a basic symmertric matrix D. the classes of [RJ]$_{2}$ can be used as a generalize Quincunx subsampling matrix and serveral polygonal subsampling matrices. In this paper, we will present in particular the systematical block-wise extending-method for {RJ]$_{N}$. We have deduced a new orthorgonal matrix $M_{1}$.mem.[RRJ]$_{N}$ from a nonorthogonal matrix $M_{O}$.mem.[RJ]$_{N}$. These matrices can be used to develop efficient algorithms in IMT2000 signal processing, multidimensional subsampling, spectrum analyzers, and signal screamblers, as well as in speech and image signal processing.gnal processing.g.

  • PDF

ESTIMATES FOR THE HIGHER ORDER RIESZ TRANSFORMS RELATED TO SCHRÖDINGER TYPE OPERATORS

  • Wang, Yanhui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.235-251
    • /
    • 2021
  • We consider the Schrödinger type operator ��k = (-∆)k+Vk on ℝn(n ≥ 2k + 1), where k = 1, 2 and the nonnegative potential V belongs to the reverse Hölder class RHs with n/2 < s < n. In this paper, we establish the (Lp, Lq)-boundedness of the higher order Riesz transform T��,�� = V2��∇2��-��2 (0 ≤ �� ≤ 1/2 < �� ≤ 1, �� - �� ≥ 1/2) and its adjoint operator T∗��,�� respectively. We show that T��,�� is bounded from Hardy type space $H^1_{\mathcal{L}_2}({\mathbb{R}}_n)$ into Lp2 (ℝn) and T∗��,�� is bounded from ��p1 (ℝn) into BMO type space $BMO_{\mathcal{L}_1}$ (ℝn) when �� - �� > 1/2, where $p_1={\frac{n}{4({\beta}-{\alpha})-2}}$, $p_2={\frac{n}{n-4({\beta}-{\alpha})+2}}$. Moreover, we prove that T��,�� is bounded from $BMO_{\mathcal{L}_1}({\mathbb{R}}_n)$ to itself when �� - �� = 1/2.

Digital Image Processing Using Non-separable High Density Discrete Wavelet Transformation (비분리 고밀도 이산 웨이브렛 변환을 이용한 디지털 영상처리)

  • Shin, Jong Hong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.1
    • /
    • pp.165-176
    • /
    • 2013
  • This paper introduces the high density discrete wavelet transform using quincunx sampling, which is a discrete wavelet transformation that combines the high density discrete transformation and non-separable processing method, each of which has its own characteristics and advantages. The high density discrete wavelet transformation is one that expands an N point signal to M transform coefficients with M > N. The high density discrete wavelet transformation is a new set of dyadic wavelet transformation with two generators. The construction provides a higher sampling in both time and frequency. This new transform is approximately shift-invariant and has intermediate scales. In two dimensions, this transform outperforms the standard discrete wavelet transformation in terms of shift-invariant. Although the transformation utilizes more wavelets, sampling rates are high costs and some lack a dominant spatial orientation, which prevents them from being able to isolate those directions. A solution to this problem is a non separable method. The quincunx lattice is a non-separable sampling method in image processing. It treats the different directions more homogeneously than the separable two dimensional schemes. Proposed wavelet transformation can generate sub-images of multiple degrees rotated versions. Therefore, This method services good performance in image processing fields.

The Digital Image Processing Method Using Triple-Density Discrete Wavelet Transformation (3중 밀도 이산 웨이브렛 변환을 이용한 디지털 영상처리 기법)

  • Shin, Jong Hong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.3
    • /
    • pp.133-145
    • /
    • 2012
  • This paper describes the high density discrete wavelet transformation which is one that expands an N point signal to M transform coefficients with M > N. The double-density discrete wavelet transform is one of the high density discrete wavelet transformation. This transformation employs one scaling function and two distinct wavelets, which are designed to be offset from one another by one half. And it is nearly shift-invariant. Similarly, triple-density discrete wavelet transformation is a new set of dyadic wavelet transformation with two generators. The construction provides a higher sampling in both time and frequency. Specifically, the spectrum of the first wavelet is concentrated halfway between the spectrum of the second wavelet and the spectrum of its dilated version. In addition, the second wavelet is translated by half-integers rather than whole-integers in the frame construction. This arrangement leads to high density wavelet transformation. But this new transform is approximately shift-invariant and has intermediate scales. In two dimensions, this transform outperforms the standard and double-density discrete wavelet transformation in terms of multiple directions. Resultingly, the proposed wavelet transformation services good performance in image and video processing fields.

A Design of Optimal Masks in Hadamard Transform Spectrometers (하다마드 분광계측기의 마스크 설계)

  • 박진배
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.239-248
    • /
    • 1995
  • The method of increasing signal to noise ratio (SNR) in a Hadamard transform spectrometer (HTS) is multiplexing. The multiplexing is executed by a mask. Conventional masks are mechanical or electro-optical. A mechanical mask has disadvantages of jamming and misalignment. A stationary electro-optical mask has a disadvantage of information losses caused by spacers which partition mask elements. In this paper, a mixed-concept electro-optical mask (MCEOM) is developed by expanding the length of a spacer to that of lon-off mask element. An MCEOM is operated by stepping a movable mask. 2N measurements are required for N spectrum estimates. The average mean square error (AMSE) using MCEQM is equal to that using a stationary electro-optical mask without spacers for large N. The cost of manufacturing an MCEOM is lower than that of producing a conventional electro-optical mask because an MCEOM needs only (N + 1)/2 on-off mask elements whereas the con¬ventional electro-optical mask needs N on-off mask elements. There are no information losses in the spectrometers having an MCEOM.

  • PDF