• 제목/요약/키워드: Myocytes

검색결과 180건 처리시간 0.022초

Contractile Force Measurements of Cardiac Myocytes Using a Micro-manipulation System

  • Park Suk-Ho;Ryu Seok-Kyu;Ryu Seok-Chang;Kim Deok-Ho;Kim Byung-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • 제20권5호
    • /
    • pp.668-674
    • /
    • 2006
  • In order to develop a cell based robot, we present a micro-mechanical force measurement system for the biological muscle actuators, which utilize glucose as a power source. The proposed measurement system is composed of a micro-manipulator, a force transducer with a glass probe, a signal processor, an inverted microscope and video recording system. Using this measurement system, the contractile force and frequency of the cardiac myocytes were measured in real time and the magnitudes of the contractile force of each cardiac myocyte under different conditions were compared. From the quantitative experimental results, we could estimate that the force of cardiac myocytes is about $20\sim40{\mu}N$, and show that there are differences between the control cells and the micro-patterned cells.

쥐 심근 세포의 $[^3H]$ Ouabain 결합과 $^{45}Ca^{2+}}$섭취에 미치는 Ouabain의 영향 ($[^3H]$ Ouabain Binding and Effect of Ouabain on $^{45}Ca^{2+}$-Uptake in Rat Cardiac Myocytes)

  • 이신웅;김영희;진갑덕
    • 약학회지
    • /
    • 제28권3호
    • /
    • pp.129-138
    • /
    • 1984
  • Specific [$^{3}H$] ouabain binding and $Ca^{2+}$ -uptake were measured to elucidate the role of high affinity [$^{3}H$] ouabain binding site in rat cardiac myocytes which contain 65% of rod cells. High affinity [$^{3}$H] ouabain binding site, which is about 3% of total pump sites, with apparent dissociation constant ($K_{D}$) of $1.1{\times}10^{-7}M$ and maximum binding site concentration (Bmax) of 1.2 pmol/mg protein ($1.754{\times}10^{5}cells$) were identified. At the concentration of $10^{-7}M$ to $10^{-4}M$, ouabain produced concentration dependent increase in $Ca^{2+}$-uptake of myocytes. The effect of ouabain on $Ca^{2+}$-uptake was not effected by membrane depolarization (elevated K+ in incubation medium) or verapamil. These results suggest that in rat ventricular myocytes the ouabain receptor complex to high affinity site may increase Na+ - $Ca^{2+}$ exchange across the sarcolemmal membrane by inhibition of Na+, K+ - ATPase.

  • PDF

전단 자극에 의한 심방 근세포 칼슘 웨이브의 발생: Phospholipase C-이노시톨 1,4,5-삼인산 수용체 신호전달의 역할 (Activation of a Ca2+ wave by Shear Stress in Atrial Myocytes: Role of Phospholipase C-inositol 1,4,5-Trisphosphate Receptor Signaling)

  • 김준철;우선희
    • 약학회지
    • /
    • 제59권4호
    • /
    • pp.158-163
    • /
    • 2015
  • Cardiac myocytes are subjected to fluid shear stress during each contraction and relaxation. Under pathological conditions, such as valve disease, heart failure or hypertension, shear stress in cardiac chamber increases due to high blood volume and pressure. The shear stress induces proarrhythmic longitudinal global $Ca^{2+}$ waves in atrial myocytes. In the present study, we further explored underlying cellular mechanism for the shear stress-induced longitudinal global $Ca^{2+}$ wave in isolated rat atrial myocytes. A shear stress of ${\sim}16dyn/cm^2$ was applied onto entire single myocyte using pressurized fluid puffing. Confocal $Ca^{2+}$ imaging was performed to measure local and global $Ca^{2+}$ signals. Shear stress elicited longitudinally propagating global $Ca^{2+}$ wave (${\sim}80{\mu}m/s$). The occurrence of shear stress-induced atrial $Ca^{2+}$ wave was eliminated by the inhibition of ryanodine receptors (RyRs) or inositol 1,4,5-trisphosphate receptors ($IP_3Rs$). In addition, pretreatment of phospholipase C (PLC) inhibitor U73122, but not its inactive analogue U73343, abolished the generation of longitudinal $Ca^{2+}$ wave under shear stress. Our data suggest that shear-induced longitudinal $Ca^{2+}$ wave may be induced by $Ca^{2+}$-induced $Ca^{2+}$ release through the RyRs which is triggered by $PLC-IP_3R$ signaling in atrial myocytes.

흰쥐의 심장과 심근세포에서 cyclic AMP에 의한 Mg2+ 유리조절 (Regulation of Mg2+ efflux by cAMP in perfused rat heart and isolated ventricular myocytes)

  • 강형섭;김진상;강창원;이호일
    • 대한수의학회지
    • /
    • 제39권1호
    • /
    • pp.62-69
    • /
    • 1999
  • Although it has been reported that hormones or chemicals, which increase in intracellular cAMP, produced $Mg^{2+}$ release from the heart, it is not well characterized whether a specific $Mg^{2+}$ exchanger is involved in cAMP-induced $Mg^{2+}$ efflux in the mammalian hearts. In this work, we studied the relationship between the increase in intracellular cAMP and ion transport system on $Mg^{2+}$ regulation in the perfused rat heart and isolated myocytes. The $Mg^{2+}$ content in the perfusate and supernatant were measured by atomic absorption spectrophotometer. The addition of membrane permeable cAMP analogue to the perfused hearts and myocytes induced a $Mg^{2+}$ efflux in the dose dependent manners. $Mg^{2+}$ efflux was stimulated by cAMP modulators (forskolin, IBMX and Ro20-1724) in the perfused hearts and myocytes. cAMP-induced $Mg^{2+}$ efflux was inhibited by $H_7$, benzamil or imipramine in the perfused hearts and myocytes, but not by EIPA. We confirmed that a significant $Mg^{2+}$ efflux was induced by an increase in intracellular cAMP in the hearts and myocytes. The cAMP-induced increase of $Mg^{2+}$ efflux in the hearts may be involved in ion transport system ($Na^+-Ca^{2+}$ and $Na^+-Mg^{2+}$ exchanger).

  • PDF

히스티딘-리치 $Ca^{2+}$ 결합 단백질에 의한 심실근세포 수축 및 $Ca^{2+}$ Transient의 조절 (Regulation of Contraction and $Ca^{2+}$ Transient by Histidine-rich $Ca^{2+}$-binding Protein in Ventricular Myocytes)

  • 손민정;김준철;김성우;안종렬;우선희
    • 약학회지
    • /
    • 제56권6호
    • /
    • pp.377-381
    • /
    • 2012
  • The histidine-rich $Ca^{2+}$ binding protein (HRC) is a $Ca^{2+}$ binding protein in the sarcoplasmic reticulum (SR). In this study, we examined whether the HRC is involved in the regulation of cardiac contraction and $Ca^{2+}$ signaling using HRC knock-out (KO) mouse ventricular myocytes. In field-stimulated single mouse ventricular myocytes, cell shortenings and $Ca^{2+}$ transients were measured using a video edge detection and a confocal $Ca^{2+}$ imaging, respectively. Compared with the wide-type (WT) myocytes, the magnitudes of cell shortenings were significantly larger in HRC KO cells (P<0.01, WT vs. KO). The rate of contraction and relaxation was significantly accelerated in HRC KO myocytes (P<0.05 and P<0.01, respectively, WT vs. KO). The magnitudes of $Ca^{2+}$ transients were increased by HRC KO (P<0.01, WT vs. KO). In addition, the decay of the $Ca^{2+}$ transient was faster in HRC KO cells than in wild-type cells P<0.01, WT vs. KO). These results suggest that HRC may suppress SR $Ca^{2+}$ releases and decay of $Ca^{2+}$ transients during action potentials, thereby attenuating ventricular contraction and relaxation.

기니픽 심장과 심근 세포에서 ${\alpha}_1-Adrenergic$ 자극에 의한 $Mg^{2+}$ 유리조절 (Regulation of $Mg^{2+}$ Release in Guinea Pig Heart and Isolated Ventricular Myocytes by ${\alpha}_1-Adrenergic$ Stimulation)

  • 강형섭;장성은;김진상
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권6호
    • /
    • pp.717-730
    • /
    • 1997
  • $Mg^{2+}$ is the fourth most abundant cation in cellular organisms. Although the biological chemistry and the physiological roles of the magnesium ion were well known, the regulation of intracellular $Mg^{2+}$ in mammalian cells is not fully understood. More recently, however, the mechanism of $Mg^{2+}$ mobilization by hormonal stimulation has been investigated in hearts and in myocytes. In this work we have investigated the regulation mechanism responsible for the $Mg^{2+}$ mobilization induced by ${\alpha}1-adrenoceptor$ stimulation in perfused guinea pig hearts or isolated myocytes. The $Mg^{2+}$ content of the perfusate or the supernatant was measured by atomic absorbance spectrophotometry. The elimination of $Mg^{2+}$ in the medium increased the force of contraction of right ventricular papillary muscles. Phenylephrine also enhanced the force of contraction in the presence of $Mg^{2+}$-free medium. ${\alpha}1-Agonists$ such as phenylephrine were found to induce $Mg^{2+}$ efflux in both perfused hearts or myocytes. This was blocked by prazosin, a ${\alpha}1-adrenoceptor$ antagonist. $Mg^{2+}$ efflux by phenylephrine was amplified by $Na^+$ channel blockers, an increase in extracellular $Ca^{2+}$ or a decrease in extracellular $Na^+$. By contrast, the $Mg^{2+}$ influx was induced by verapamil, nifedipine, ryanodine, lidocaine or tetrodotoxin in perfused hearts, but not in myocytes. $W_7$, a $Ca^{2+}/calmodulin$ antagonist, completely blocked the pheylephrine-, A23187-, veratridine-, $Ca^{2+}-induced$ $Mg^{2+}$ efflux in perfused hearts or isolated myocytes. In addition, $Mg^{2+}$ efflux was induced by $W_7$ in myocytes but not in perfused heart. In conclusion, An increase in $Mg^{2+}$ efflux by ${\alpha}1-adrenoceptor$ stimulation in hearts can be through $IP_3$ and $Ca^{2+}-calmodulin$ dependent mechanism.

  • PDF

Murrayafoline-A에 의한 심실 근육세포 $Ca^{2+}$ 스파크 발생의 증가 (Enhancement of $Ca^{2+}$ Spark Occurrence by Murrayafoline-A in Rat Ventricular Myocytes)

  • 김준철;뉘엔 만 콩;우선희
    • 약학회지
    • /
    • 제58권4호
    • /
    • pp.245-249
    • /
    • 2014
  • Murrayafoline-A (1-methoxy-3-methylcarbazole) is a monomeric carbazole alkaloid found in Murraya euchrestifolia HAYATA and Glycosmis stenocarpa. We have recently shown that murrayafoline-A has positive inotropic effect in isolated rat ventricular myocytes. To know possible mechanisms for the positive inotropic effect of murrayafoline-A we examined the effects of murrayafoline-A on in situ behavior of cardiac $Ca^{2+}$ release units ('$Ca^{2+}$ sparks') and sarcoplasmic reticulum (SR) $Ca^{2+}$ loading using confocal $Ca^{2+}$ imaging method in single rat ventricular myocytes. Murrayafoline-A significantly increased the frequency (events/($10^3{\mu}m^2{\cdot}s$)) of $Ca^{2+}$ sparks in a concentration-dependent manner, with an $EC_{50}$ of $28{\pm}6.4{\mu}M$ and a maximal ~twofold change. The $Ca^{2+}$ content in the SR, measured as caffeine (10 mM)-induced $Ca^{2+}$ transient, was significantly increased by murrayafoline-A (${\approx}$116% and ${\approx}$123% of control at 25 and 100 ${\mu}M$, respectively). In addition, murrayafoline-A significantly increased the fractional $Ca^{2+}$ release, suggesting increase in the efficacy of $Ca^{2+}$ release at given SR $Ca^{2+}$ loading. These results suggest that murrayafoline-A may enhance contractility via increase in $Ca^{2+}$ release from the SR through the ryanodine receptors in ventricular myocytes.

Stretch-activated $K^+$ Channels in Rat Atrial Myocytes

  • Youm, Jae-Boum
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권6호
    • /
    • pp.341-348
    • /
    • 2003
  • Mechanical stimuli to the cardiac myocytes initiate many biochemical and physiological events. Stretch-activated cation channels have been suggested to mediate these events. In this study, cell-attached and inside-out excised-patch clamp methods were used to identify stretch-activated cation channels in adult rat atrial myocytes. Channel openings were increased in cell-attached configuration when negative pressure was applied to the pipette, and also in inside-out excised patches by negative pressure. The channel was not permeable to $Cl^-$, $Na^+$ and $Cs^+$, but selectively permeable to $K^+$, and the degree of activation was dependent on the magnitude of negative pressure (full activation at ${\sim} -50 mmHg). In symmetrical 140 mM KCl, the slope conductance was $51.2{\pm}3$ pS between the potentials of -80 and 0 mV and $55{\pm}6$ pS between 0 and +80 mV (n=5). Glibenclamide ($100{mu}M$) or ATP (2 mM) failed to block the channel openings, indicating that it is not ATP-sensitive $K^+$ channel. Arachidonic acid ($30{mu}M$), which has been shown to activate a $K^+$ channel cooperatively with membrane stretch, did not affect the channel activity. $GdCl_3$ ($100{mu}M$) also did not alter the activity. These results demonstrate that the mechanical stretch in rat atrial myocytes activates a novel $K^+$-selective cation channel, which is not associated with other $K^+$ channels such as ATP-sensitive and arachidonic acid-activated $K^+$ channel.

Chrysosplenol C가 분리한 백서 심실 근세포 $Ca^{2+}$ Transient에 미치는 효과 (Effects of Chrysosplenol C on Intracellular $Ca^{2+}$ Transient in Isolated Rat Ventricular Myocytes)

  • 정석한;두 디 두 후옹;트란 반 성;뉘엔 만 콩;김영호;우선희
    • 약학회지
    • /
    • 제55권2호
    • /
    • pp.168-171
    • /
    • 2011
  • Chrysosplenol C [5,6-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,7-dimethoxychromen-4-one] is a flavonoid found in Miliusa balansae and Pterocaulon sphacelatum. We have recently shown that chrysosplenol C has positive inotropic effect in isolated rat ventricular myocytes. In the present study, we explored a possible mechanism for the positive inotropic effect of chrysosplenol C by examining intracellular $Ca^{2+}$ transients during action potentials. The intracellular $Ca^{2+}$ transients were measured by confocal $Ca^{2+}$ imaging in field-stimulated single rat ventricular myocytes. Chrysosplenol C (50 ${\mu}M$) significantly increased the magnitudes (${\Delta}F/F_0$) of $Ca^{2+}$ transients (control, $1.08{\pm}0.05$; chrysosplenol C, $1.25{\pm}0.03$; n=8, P<0.01). Half decay time of the action potential-induced $Ca^{2+}$ transient was not altered by chrysosplenol C (50 ${\mu}M$) (control, $154{\pm}6$ ms; chrysosplenol C, $167{\pm}11$ ms; n=21). The $Ca^{2+}$ content in the sarcoplasmic reticulum (SR), measured as caffeine (10 mM)-induced $Ca^{2+}$ transient, was significantly decreased by chrysosplenol C (50 ${\mu}M$). These results indicate that chrysosplenol C increases $Ca^{2+}$ transients without altering $Ca^{2+}$ removal kinetics in ventricular myocytes, providing a possible mechanism for its positive inotropic effect.

Thiol-dependent Redox Mechanisms in the Modification of ATP-Sensitive Potassium Channels in Rabbit Ventricular Myocytes

  • Han, Jin;Kim, Na-Ri;Cuong, Dang-Van;Kim, Chung-Hui;Kim, Eui-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권1호
    • /
    • pp.15-23
    • /
    • 2003
  • Cellular redox state is known to be perturbed during ischemia and that $Ca^{2+}$ and $K^2$ channels have been shown to have functional thiol groups. In this study, the properties of thiol redox modulation of the ATP-sensitive $K^2$ ($K_{ATP}$) channel were examined in rabbit ventricular myocytes. Rabbit ventricular myocytes were isolated using a Langendorff column for coronary perfusion and collagenase. Single-channel currents were measured in excised membrane patch configuration of patch-clamp technique. The thiol oxidizing agent 5,5'-dithio-bis-(2-nitro-benzoic acid) (DTNB) inhibited the channel activity, and the inhibitory effect of DTNB was reversed by dithiothreitol (disulfide reducing agent; DTT). DTT itself did not have any effect on the channel activity. However, in the patches excised from the metabolically compromised cells, DTT increased the channel activity. DTT had no effect on the inhibitory action by ATP, showing that thiol oxidation was not involved in the blocking mechanism of ATP. There were no statistical difference in the single channel conductance for the oxidized and reduced states of the channel. Analysis of the open and closed time distributions showed that DTNB had no effect on open and closed time distributions shorter than 4 ms. On the other hand, DTNB decreased the life time of bursts and increased the interburst interval. N-ethylmaleimide (NEM), a substance that reacts with thiol groups of cystein residues in proteins, induced irreversible closure of the channel. The thiol oxidizing agents (DTNB, NEM) inhibited of the $K_{ATP}$ channel only, when added to the cytoplasmic side. The results suggested that metabolism-induced changes in the thiol redox can also modulate $K_{ATP}$ channel activity and that a modulatory site of thiol redox may be located on the cytoplasmic side of the $K_{ATP}$ channel in rabbit ventricular myocytes.